
USOO6963891B1

(12) United States Patent (10) Patent No.: US 6,963,891 B1
Hoyle (45) Date of Patent: Nov. 8, 2005

(54) FAST FOURIER TRANSFORM (56) References Cited

(75) Inventor: David J. Hoyle, Glendale, AZ (US) U.S. PATENT DOCUMENTS
4,612,626. A 9/1986 Marchant 708/404

(73) Assignee: Texas Instruments Incorporated, 5,313,413 A * 5/1994 Bhatia et al. 708/408
Dallas, TX (US) 5,430,667 A 7/1995 Takano 708/404

5,491,652 A * 2/1996 Luo et al. 708/404
(*) Notice: Subject to any disclaimer, the term of this 5,694,347 A * 12/1997 Ireland 708/404

patent is extended or adjusted under 35 5,890,098 A * 3/1999 Kozaki et al. 702/77
U.S.C. 154(b) by 0 days. 6,366,936 B1 4/2002 Lee et al. 623/1.11

6,591.284 B1* 7/2003 Brockmeyer et al. 708/400
(21) Appl. No.: 09/542,888 * cited by examiner

(22) Filed: Apr. 4, 2000 Primary Examiner-Chuong D Ngo
O O (74) Attorney, Agent, or Firm-Carlton H. Hoel; W. James

Related U.S. Application Data Brady; Frederick J. Telecky, Jr.
(60) Provisional application No. 60/128,340, filed on Apr.

8, 1999. (57) ABSTRACT

(51) W. G06F 15/00 A fast Fourier transform with Sequential memory accessing
(52) U.S. Cl. .. 708/404 Within each stage.
(58) 708/403, 404,

708/405, 406, 407,408, 409 4 Claims, 11 Drawing Sheets

CACHELINE

W0
C
C. W0 .

O

N -1 / De

1 1
ZaSallas/N XXXY

N7 2

-1Nw | / C

X

5

U.S. Patent Nov. 8, 2005 Sheet 2 of 11 US 6,963,891 B1

SEQUENCE THROUGH
BUTTERFLIES IN BLOCK

LAST
BLOCK IN
STAGE2

FIC.. 2

WHERE n = 0, 1,..., -1

FIG. 4 OL
(PRIOR ART)

U.S. Patent Nov. 8, 2005 Sheet 3 of 11

•^N LILY||LOWXXXX

U.S. Patent Nov. 8, 2005 Sheet 4 of 11 US 6,963,891 B1

x(n+ i) y(n+ i)

N N

x(n+1) WHERE n = 0, 1.-1 y(n+1)
FIG. 4 b
(PRIOR ART)

U.S. Patent Nov. 8, 2005 Sheet 5 of 11 US 6,963,891 B1

e0 FIG. 5 frn 28
Q 16

O D

8 s
8
O

10 3; 8, 12 O
8, Q5 %

N N N N
N N

y

N N N N N l 2 N N N 6 S.N % 3 1. N N N t % N % % s S S

yY
2 O4. ::s

% 10
28 SSX COs 11
NXX& X3.

30 & XXX 2.
C X X X X KO & S&S SS

&x$ ><:
s 05: 3. & 3. 3, 38 % E. S 4 38 3S NSS 2. 3 S.

S : N (><
3N (><

s E.
: N

: RsA.
Šl Sé

US 6,963,891 B1 Sheet 6 of 11 Nov. 8, 2005 U.S. Patent

FIC. 6
(PRIOR ART)

US 6,963,891 B1 Sheet 7 of 11 Nov. 8, 2005 U.S. Patent

4

Z HIWd WIW0

| HIWd WIWO

9.I.H.

01001 NM00 83M0d

U.S. Patent Nov. 8, 2005 Sheet 9 of 11 US 6,963,891 B1

NWO w0

-: Ow. W W
C W3 - W3
Cw4 W.
C w5 W5
C w6 W6
Cw7 w7

:
y
W 4.

W 7

FIC. 1 O

U.S. Patent NOV. 8, 2005 Sheet 10 of 11

(LAW HOIHd)

3 N?TEHOVO

U.S. Patent

2 / '01, H.

O O O - O O -
on n ud N OO C9

/

ENITEHOWO

US 6,963,891 B1
1

FAST FOURIER TRANSFORM

CROSS-REFERENCE TO RELATED
APPLICATIONS

BACKGROUND OF THE INVENTION

The present invention relates to Semiconductor devices,
and in particular to devices and methods for fast Fourier
transforms.

The terminology fast Fourier transform (FFT) refers to
efficient methods for computation of discrete Fourier trans
forms (DFT). See generally, Burrus and Parks, DFT/FFT
and Convolution Algorithms (Wiley-Interscience 1985), for
a definition and discussion of various forms of the FFT. The
commonly used FFT can be Schematically represented as a
Series of elementary “butterfly” computations. In particular,
FIG. 3 illustrates the computations of a four-stage 16-point
(radix-2) FFT and represents the input data locations as the
lefthand column of butterfly corners, the output data loca
tions as the righthand column (which replace the input data
in the same memory locations), and the (butterfly) compu
tations as lines connecting the memory locations for the data
involved together with the twiddle factors on the result lines.
The overall computation proceeds as three nested loops: the
outer loop counts through the four stages from left to right,
the middle loop counts through a block of overlapping
butterflies in a Stage, and the inner loop jumps among the
blocks of a stage as shown by the curved arrows. Each
butterfly uses two complex data entries Spaced apart by the
Stride with the Spacing decreasing for each Stage.
Pseudocode for the FFT of FIG. 3 with PI an approximation
for L, X. the initial data real parts, and y. the initial data
imaginary parts is as follows:

stride = 16
do k = 1 to 4

stride = stride/2
do j = 0 to stride-1

c = cos(2*PI/16)
s = sin(2*PI*/16)
do i = j to 15 increment by 2*stride

tempx = xi - Xi+stride
xi = xi + xi+stride
tempy = yi - yi+stride
yi = yi + yi+stride
xi+stride = c tempx - s*tempy
yi+stride = s*tempx + c tempy

continue
continue

continue

FIG. 3 indicates the order of computation of the butterflies
in each Stage by the curved arrows between the upper
lefthand corners of the butterflies.

The FFT is widely used in real time digital signal pro
cessing requiring fast execution. However, typical comput
ing Systems have time consuming memory access, and the
FFT is extremely memory acceSS and Storage intensive.
Indeed, each butterfly (for radix-4) reads four complex data
entries plus three complex twiddle coefficients from memory
and writes four complex data entries back to the same data
memory locations. Thus a 64-point radix-4 FFT requires a
total of 192 data memory reads and 192 data memory writes
and 144 memory reads for twiddle coefficients. Thus various
approaches for efficient memory arrangement in FFTs have
been proposed; Such as the addressing System of U.S. Pat.
No. 5,091,875.

15

25

35

40

45

50

55

60

65

2
However, in the known FFTs the jumping of the memory

accesses (in the middle Stages) typically results in cache
thrashing and obliterates the advantages of cache memory as
only one element in each cacheline is used and So reduces
memory bandwidth. Thus the known FFTs have cache usage
problems. And with the increasing availability of processors
using packed data operations (single instruction multiple
dispatch or SIMD), it is also important that the FFT be able
to make effective use of these kinds of architectures.

SUMMARY OF THE INVENTION

The present invention provides an FFT method with an
inner loop which Sequentially progresses through memory to
compute all the butterflies of a Stage and thereby takes
advantage of cache and all available SIMD processing
bandwidth. Preferred embodiments also create a twiddle
factor table with redundancy So the Stage loop can Sequen
tially progress through the table. Preferred embodiments
include digital signal processors having data cache and
programmed with the FFT method, and also include pro
cessors with SIMD architectures.
The invention has advantages including faster execution

in systems with cache memory and SIMD instructions such
as very wide load/store datapath and greater than two
multipliers.

BRIEF DESCRIPTION OF THE DRAWINGS

The Figures are heuristic for clarity.
FIG. 1 illustrates a preferred embodiment FFT.
FIG. 2 is a flow diagram of a preferred embodiment.
FIG. 3 shows a known FFT.

FIGS. 4a–4c illustrate a radix-4 butterfly plus an unrolled
version.

FIG. 5 shows a preferred embodiment radix-4 FFT.
FIG. 6 is a known radix-4 FFT.
FIG. 7 illustrates a DSP with on-board cache.

FIG.8 shows a preferred embodiment parallelized radix-4
FFT

FIGS. 9-10 show twiddle factor table accesses.
FIG. 11 illustrates cache thrashing.
FIG. 12 shows cache utilization of a preferred embodi

ment.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Overview

As illustrated by FIG. 3, the middle stage(s) of an FFT
have disjoint blocks of Overlapping butterflies. Indeed, prior
art N-point (radix-R) FFTs for N= R' have three nested
computation loops: (1) an outer loop (counting through the
M stages), (2) a middle loop (counting through the number
of butterflies within a block: from N/R in the first stage to 1
in the Mth Stage); and (3) an inner loop (counting among the
blocks of a stage: 1 block in the first stage and N/R in the
Mth Stage). The within-block loop size decreases from Stage
to Stage by a factor of R, and the among-blockS loop size
complementarily increases by a factor of R from Stage to
Stage. The preferred embodiments (e.g., FIG. 1) essentially
reorder the loops to avoid the jumps of the among-blockS
inner loop and have (1) an outer loop counting the stages, (2)
a middle among-blocks loop, and (3) a within-block inner
loop. The last two loops may fuse to form a single constant
size (N/Riterations) loop through the butterflies of a stage.

US 6,963,891 B1
3

Compare preferred embodiment FIG. 1 and prior art FIG. 3
illustrating the ordering of the butterfly computations with
the curved arrows.
AS the inner loop always has N/R iterations in a deeply

pipelined machine, the epilogue and prologue are constant
and predictable. Not So in the prior art. Prior art progression
through the loops causes the epilogue and prologue to
become more and more of an overhead. This is reinforced as
DSPs tend to be more deeply pipelined to achieve higher
Speeds, So loop prologue and epilogue is an architectural
issue that must be overcome.

Radix-2 Preferred Embodiment
FIG. 1 schematically illustrates a first preferred embodi

ment 16-point four-stage radix-2 FFT, and FIG. 2 the
asSociated flow diagram. The loop Structure generalizes
beyond 16-point data to more practical Situations, as will be
described in the following section, but the 16-point embodi
ment will be used to demonstrate the general aspects of the
embodiments. Pseudocode for the preferred embodiment is
as follows (compare to pseudocode in the background):

stride = 16

do k = 1 to 4
stride = stride/2
n = 2n
i = 0
do j = 0 to 7

m = n (%stride)
c = cos(mPI/16)
s = sin(mPI/16)
tempx = xi - xi+stride
xi = xi + xi+stride
tempy = yi - yi+stride
yi = yi + yi+stride
xi+stride = c tempx - s*tempy
yi+stride = s*tempx + c tempy
i = i+1
if(C+1)%stride == 0) i = i + stride

continue
continue

The arrows in FIG. 1 indicate the order of computation of the
butterflies in each Stage and also the memory location jumps
between blocks of overlapping butterflies. Comparison with
FIG. 3 contrasts the essentially Sequential memory location
accessing of the preferred embodiment with the jumping
back and forth accessing of the prior art in the middle Stages.
This sequential access implies effective use of cache
memory for a processor employing the preferred embodi
ment. Indeed, if the cache line cannot hold all of the data of
a stride, then the second butterfly in prior art FIG. 3 must
access new cache lines, whereas the Second butterfly data in
preferred embodiment FIG. 1 will be adjacent the first
butterfly data and likely in the same cache lines. Hence, once
a cache line is accessed, it will be fully used up. Indeed,
FIGS. 11 and 12 illustrate the prior art and preferred
embodiment, respectively, with a cache line of 8 bytes (2
complex Samples, each with 16-bit real and imaginary parts)
indicated by the vertical rectangles. FIG. 11 showing how
the prior art method will constantly cause eviction of good
data and how each 8 byte line will only be 50% used. In
contrast, FIG. 12 shows the preferred embodiment use of the
whole cache line.

The computation of the twiddle factors in the foregoing
pseudocode of both the preferred embodiment and the prior
art could be avoided by precomputation and Storage in a
lookup table. But this implies another memory location

15

25

35

40

45

50

55

60

65

4
Sequence and cache usage question. Indeed, prior art FIG. 3
shows how the twiddle factors in the Second Stage Skip the
odd powers of W, and the twiddle factors of the third stage
skip three out of four powers of W. The prior art sparsely
accesses the twiddle factor table in a similar chaotic manner
to how it accesses data.
Some preferred embodiments employ a redundant twiddle

factor table with sequential memory locations for butterfly
computations in all stages. Indeed, FIG. 9 shows the prior art
twiddle factor table accesses and FIG. 10 preferred embodi
ment accesses corresponding to the computations illustrated
in FIGS. 3 and 1, respectively. The same table is used for
each Stage in FIG. 9; this implies the access jumps in the
middle Stages. In contrast, the preferred embodiment has a
Separate portion of a redundant twiddle factor table for each
stage which yields the sequential accesses. Of course, W=1,
So the last Stage does not need any table lookups.
The following general radix-4 section includes generation

of a redundant twiddle factor table.
Radix-4 FFT
A radix-4 FFT has four-winged butterflies and twiddle

factors as illustrated in FIG. 4a (FIG. 4b is an abbreviated
version); and the middle stage butterflies again fall into
disjoint groups of Overlapping butterflies as shown in the
three-stage radix-4 FFT of FIG. 5. FIG. 5 illustrates a
preferred embodiment radix-4 FFT and FIG. 6 the prior art;
again the preferred embodiment Sequences through the
butterflies of a block in the middle Stage, whereas the prior
art jumps from block to block.
A preferred embodiment FFT with a redundant twiddle

factor lookup table can be described with the following code
(written in C):

First, presume the input data consists of an array X of N
(a power of 4) complex numbers, XO+jX1,
X2+jX3,..., Xi+jXi+1,..., with 16-bit real parts XO,
X2, . . . and 16-bit imaginary parts X1, X3, . . . , and
stored on word boundaries. Next, presume the twiddle
factors, 1, W, W, ..., W. . . . with W=e', with 16-bit
real and imaginary parts (cosines and Sines), are redundantly
generated and stored in array w follows whre PI is a 16-bit
approximation of TL and theta1, theta2, theta3, X t, and y t
are double precision floating point numbers for accuracy:

US 6,963,891 B1
S

-continued

FIG. 4a shows the twiddle factors for the nth butterfly in the
first stage form a group of four as W’ (=1), W", W-", and
Wi", and the foregoing theta1, theta2, and theta3 correspond
to the n, 2n, and 3n powers for n=i. Thus each butterfly has
three nontrivial twiddle factors.

The first (j=1) loop generates the 3N/4 nontrivial twiddle
factors for the N/4 butterflies of the first stage and stores
them in wO to w3N/4-1 in the order of use as indicated
by FIG. 5 (FIG. 5 uses the abbreviated butterfly represen
tation as in FIG. 4b rather than the FIG. 4a full version). In
contrast, the Second (j=4) loop generates the 3N/16 non
trivial twiddle factors for only a single block of butterflies of
the second stage and stores them in w3N/4 to w3N/4+3N/
16-1; this is the order of use within a block as indicated by
FIG. 5. The nth butterfly within each of the four blocks of
the Second Stage uses the same group of four twiddle factors:
1, W", W", and W'"; of course, W' is just the W for a
block of one quarter the Size of the original. These Second
stage twiddle factors form a subset of the twiddle factors
Stored for the j=1 loop, but the accessing of them would not
be sequential, So the preferred embodiment employs this
redundant Storage to maintain the Sequential memory access.

Similarly for Subsequent loops: the block size and number
of nontrivial twiddle factors to be generated and stored
reduces by a factor of 4 for each Stage. Thus the total number
of twiddle factors Stored is 3N/4+3N/16+3N/64+...+3=3N/
4*(1+/4+/16+...+4/N)-3N/4*4/3=N. This compares to the
prior art table of 3N/4 entries; so the preferred embodiment
twiddle factor table is only 33% larger.

The following function performs the FFT and stores the
results in the same locations as the initial data but with the
usual digit-reversed address (for radix-4 a digit is 2 bits and
for radix-2 a digit is 1 bit):

void ft4(int in, short ptr XI, short ptr w) {
int i, j, l1, 12, h2, pred;
int l1p1, 12p1, h2p1, tw offset, stride, fift imp;
short Xt0, yto, Xt1, yt1, xt2, yt2;
short si10, si2O, si30, co10, co20, co30;
short xhO, xh1, xh20, xh21, x10, x11, x120, x121:
short X 0, x 1, X 11, X 11p1, X h2, X h2p1, X 12, X 12p1;
short *x, *w, *x2, x0;

stride = N:
tw offset = 0;
while(stride > 1) {

j = 0;
ft imp = stride + (stride>>1);
h2 = stride>>1;
l1 = stride:
12 = stride + (stride>>1);
X = prt X;

1O

15

25

35

40

45

50

55

60

65

6

-continued

Note that the foregoing C code is optimized for the standard
compilers for the 320C6211 DSP manufactured by Texas
Instruments.

Cache Usage
FIG. 7 illustrates a 320C6211 DSP with 32 B cache lines

for the first level 4 KB data cache. (The DSP also has a
second level cache on-board.) Thus with 16-bit real and
imaginary parts, 8 radix-4 butterflies can be computed with
four cache lines for data and three cache lines for twiddle
factors without the need to acceSS level 2 cache or external
memory; this implies increased Speed compared to the prior
art FFT. Indeed, the prior art FFT would refill the cache lines
for data for each Successive butterfly (except in the last stage
in which two butterflies could be computed prior to refilling
the cache lines for data and the first Stage in which all
accesses are linear); but the same twiddle factor is used for
all butterflies computed by the inner loop.
SIMD Transformation
SIMD (single instruction multiple dispatch) transforma

tions can be performed on algorithms where the data
accesses form a linear pattern. For example, a convolution
used in an FIR filter Such as

yi = 0
for(j = 0 to n) {
y += xi-ji hi

can be unrolled to form
yi = 0

Now the data pairSh, hi+1 can be loaded as Single data
object; similarly the data pair Xi-ji, Xi-(+1) can be loaded

US 6,963,891 B1
7

as a Single data object. Then a complex multiplication
operation (e.g., cmpy) can be used in the unrolled form:

The unrolled preferred embodiment can leverage Such
operations. The accesses are more FIR-like than FFT-like. In
the prior art FFT the loops cannot be unrolled and merged
together as the accesses jump about as illustrated for the
middle stage in FIG. 6. The preferred embodiment loops can
be unrolled and memory accesses merged to take advantage
of wider memory interfaces such as LDDW of the
TMS320C6701 DSP manufactured by Texas Instruments
where 2 words are loaded at once. Also, more massively
paralleled instructions Such as paired multiplies and adds
and subtracts can be leveraged and the FFT parallelized. See
the unrolled butterfly illustrated in FIG. 4c. The exception is
the last iteration when such butterfly blocks only access two
pieces of data before jumping. But this last pass can be
accommodated using a simple loop containing only adds and
subtracts. FIG. 8 illustrates the pattern of accesses of pairs
of data; the amount of unrolling can be varied to utilize more
parallelism, up to the block size per Stage. The following
code implements the paired unrolling as in FIG.8 with the
last Stage Separately handled.

void ft4(int in, short ptr XI, short ptr w) {
int i, j, l1, 12, h2, pred;
int tw offset, stride, fift imp;
short Xt0, yto, Xt1, yt1, xt2, yt2;
short Xt0 1, yto 1, Xt11, yt11, Xt2 1, yt2 .1;
short si10, si2O, si30, co10, co20, co30;
short si11, si21, si31, co11, co21, co31;
short xhO, xh1, xh20, xh21, x10, xl1, x120, x121:
short Xho 1, xh1 1, xh2O 1, xh21 1, X10 1, xl1
short *x, *w, x2, x0;
stride = N: If N is the number of complex samples

1, X120 1, X121 1;

tw offset = 0;
while(stride > 4) { // do all but last stage

j = 0;
ft imp = stride + (stride>>1);
h2 = stride>>1;
l1 = stride:
12 = stride + (stride>>1);
X = prt X;

si10 = wi:
co10 = wi-1:
si2O = wi-2);
co20 = wi-3);
si30 = wi-4);
co3O = wi--5:
si11 = wi-6):
co11 = wi--7;
si21 = wi--8;
co21 = wi--9:
si31 = wi-10):
co31 = wi-11):
j += 12;
xhO = xO + x11;
xh1 = x1 + x11+1):

5

15

25

35

40

45

50

55

60

65

8

-continued

The preferred embodiments can be varied in many ways
while retaining the feature of an FFT with sequential
memory location butterfly computations. For example, a
radix other than 2 or 4 could be used, the number of Stages
could be larger (e.g., a 4096-point FFT with radix equal to
4 would have six stages), the precision of the data could be
varied, the butterfly can employ Saturation and/or rounding
to improve precision and Stability.
What is claimed is:
1. A fast Fourier transform method, comprising the Steps

of:
(a) storing data in sequence in memory;
(b) partitioning a fast Fourier transform into three or more

Stages,

US 6,963,891 B1
9

(c) within each of Said Stages ordering the butterfly
computations to correspond to Said Sequence; and

(d) providing a redundant twiddle factor table including a
first set of twiddle factors plus a second set of twiddle
factors wherein Said Second Set is a Subset of Said first
Set.

2. A fast Fourier transform method, comprising the Steps
of:

(a) providing N-point data where N is a positive integer,
(b) computing radix-R butterflies in a block of N/R

overlapping butterflies of Said data where R is a posi
tive integer,

(c) computing radix-R butterflies in a first block of N/Rf
overlapping butterflies of the results of Step (a); and

10
(d) after Step (c) computing radix-R butterflies in a second

block of N/R overlapping butterflies of the results of
Step (a); and

(e) providing a redundant twiddle factor table including a
first set of twiddle factors plus a second set of twiddle
factors wherein Said Second Set is a Subset of Said first
Set.

3. The method of claim 2, wherein:
(a) R equals 2.
4. The method of claim 2, wherein:
(a) R equals 4.

