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FAST FOURIER TRANSFORM 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

BACKGROUND OF THE INVENTION 

The present invention relates to Semiconductor devices, 
and in particular to devices and methods for fast Fourier 
transforms. 

The terminology fast Fourier transform (FFT) refers to 
efficient methods for computation of discrete Fourier trans 
forms (DFT). See generally, Burrus and Parks, DFT/FFT 
and Convolution Algorithms (Wiley-Interscience 1985), for 
a definition and discussion of various forms of the FFT. The 
commonly used FFT can be Schematically represented as a 
Series of elementary “butterfly” computations. In particular, 
FIG. 3 illustrates the computations of a four-stage 16-point 
(radix-2) FFT and represents the input data locations as the 
lefthand column of butterfly corners, the output data loca 
tions as the righthand column (which replace the input data 
in the same memory locations), and the (butterfly) compu 
tations as lines connecting the memory locations for the data 
involved together with the twiddle factors on the result lines. 
The overall computation proceeds as three nested loops: the 
outer loop counts through the four stages from left to right, 
the middle loop counts through a block of overlapping 
butterflies in a Stage, and the inner loop jumps among the 
blocks of a stage as shown by the curved arrows. Each 
butterfly uses two complex data entries Spaced apart by the 
Stride with the Spacing decreasing for each Stage. 
Pseudocode for the FFT of FIG. 3 with PI an approximation 
for L, X. the initial data real parts, and y. the initial data 
imaginary parts is as follows: 

stride = 16 
do k = 1 to 4 

stride = stride/2 
do j = 0 to stride-1 

c = cos(2*PI/16) 
s = sin(2*PI*/16) 
do i = j to 15 increment by 2*stride 

tempx = xi - Xi+stride 
xi = xi + xi+stride 
tempy = yi - yi+stride 
yi = yi + yi+stride 
xi+stride = c tempx - s*tempy 
yi+stride = s*tempx + c tempy 

continue 
continue 

continue 

FIG. 3 indicates the order of computation of the butterflies 
in each Stage by the curved arrows between the upper 
lefthand corners of the butterflies. 

The FFT is widely used in real time digital signal pro 
cessing requiring fast execution. However, typical comput 
ing Systems have time consuming memory access, and the 
FFT is extremely memory acceSS and Storage intensive. 
Indeed, each butterfly (for radix-4) reads four complex data 
entries plus three complex twiddle coefficients from memory 
and writes four complex data entries back to the same data 
memory locations. Thus a 64-point radix-4 FFT requires a 
total of 192 data memory reads and 192 data memory writes 
and 144 memory reads for twiddle coefficients. Thus various 
approaches for efficient memory arrangement in FFTs have 
been proposed; Such as the addressing System of U.S. Pat. 
No. 5,091,875. 
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2 
However, in the known FFTs the jumping of the memory 

accesses (in the middle Stages) typically results in cache 
thrashing and obliterates the advantages of cache memory as 
only one element in each cacheline is used and So reduces 
memory bandwidth. Thus the known FFTs have cache usage 
problems. And with the increasing availability of processors 
using packed data operations (single instruction multiple 
dispatch or SIMD), it is also important that the FFT be able 
to make effective use of these kinds of architectures. 

SUMMARY OF THE INVENTION 

The present invention provides an FFT method with an 
inner loop which Sequentially progresses through memory to 
compute all the butterflies of a Stage and thereby takes 
advantage of cache and all available SIMD processing 
bandwidth. Preferred embodiments also create a twiddle 
factor table with redundancy So the Stage loop can Sequen 
tially progress through the table. Preferred embodiments 
include digital signal processors having data cache and 
programmed with the FFT method, and also include pro 
cessors with SIMD architectures. 
The invention has advantages including faster execution 

in systems with cache memory and SIMD instructions such 
as very wide load/store datapath and greater than two 
multipliers. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The Figures are heuristic for clarity. 
FIG. 1 illustrates a preferred embodiment FFT. 
FIG. 2 is a flow diagram of a preferred embodiment. 
FIG. 3 shows a known FFT. 

FIGS. 4a–4c illustrate a radix-4 butterfly plus an unrolled 
version. 

FIG. 5 shows a preferred embodiment radix-4 FFT. 
FIG. 6 is a known radix-4 FFT. 
FIG. 7 illustrates a DSP with on-board cache. 

FIG.8 shows a preferred embodiment parallelized radix-4 
FFT 

FIGS. 9-10 show twiddle factor table accesses. 
FIG. 11 illustrates cache thrashing. 
FIG. 12 shows cache utilization of a preferred embodi 

ment. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

Overview 

As illustrated by FIG. 3, the middle stage(s) of an FFT 
have disjoint blocks of Overlapping butterflies. Indeed, prior 
art N-point (radix-R) FFTs for N= R' have three nested 
computation loops: (1) an outer loop (counting through the 
M stages), (2) a middle loop (counting through the number 
of butterflies within a block: from N/R in the first stage to 1 
in the Mth Stage); and (3) an inner loop (counting among the 
blocks of a stage: 1 block in the first stage and N/R in the 
Mth Stage). The within-block loop size decreases from Stage 
to Stage by a factor of R, and the among-blockS loop size 
complementarily increases by a factor of R from Stage to 
Stage. The preferred embodiments (e.g., FIG. 1) essentially 
reorder the loops to avoid the jumps of the among-blockS 
inner loop and have (1) an outer loop counting the stages, (2) 
a middle among-blocks loop, and (3) a within-block inner 
loop. The last two loops may fuse to form a single constant 
size (N/Riterations) loop through the butterflies of a stage. 
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Compare preferred embodiment FIG. 1 and prior art FIG. 3 
illustrating the ordering of the butterfly computations with 
the curved arrows. 
AS the inner loop always has N/R iterations in a deeply 

pipelined machine, the epilogue and prologue are constant 
and predictable. Not So in the prior art. Prior art progression 
through the loops causes the epilogue and prologue to 
become more and more of an overhead. This is reinforced as 
DSPs tend to be more deeply pipelined to achieve higher 
Speeds, So loop prologue and epilogue is an architectural 
issue that must be overcome. 

Radix-2 Preferred Embodiment 
FIG. 1 schematically illustrates a first preferred embodi 

ment 16-point four-stage radix-2 FFT, and FIG. 2 the 
asSociated flow diagram. The loop Structure generalizes 
beyond 16-point data to more practical Situations, as will be 
described in the following section, but the 16-point embodi 
ment will be used to demonstrate the general aspects of the 
embodiments. Pseudocode for the preferred embodiment is 
as follows (compare to pseudocode in the background): 

stride = 16 

do k = 1 to 4 
stride = stride/2 
n = 2n 
i = 0 
do j = 0 to 7 

m = n (%stride) 
c = cos(mPI/16) 
s = sin(mPI/16) 
tempx = xi - xi+stride 
xi = xi + xi+stride 
tempy = yi - yi+stride 
yi = yi + yi+stride 
xi+stride = c tempx - s*tempy 
yi+stride = s*tempx + c tempy 
i = i+1 
if(C+1)%stride == 0) i = i + stride 

continue 
continue 

The arrows in FIG. 1 indicate the order of computation of the 
butterflies in each Stage and also the memory location jumps 
between blocks of overlapping butterflies. Comparison with 
FIG. 3 contrasts the essentially Sequential memory location 
accessing of the preferred embodiment with the jumping 
back and forth accessing of the prior art in the middle Stages. 
This sequential access implies effective use of cache 
memory for a processor employing the preferred embodi 
ment. Indeed, if the cache line cannot hold all of the data of 
a stride, then the second butterfly in prior art FIG. 3 must 
access new cache lines, whereas the Second butterfly data in 
preferred embodiment FIG. 1 will be adjacent the first 
butterfly data and likely in the same cache lines. Hence, once 
a cache line is accessed, it will be fully used up. Indeed, 
FIGS. 11 and 12 illustrate the prior art and preferred 
embodiment, respectively, with a cache line of 8 bytes (2 
complex Samples, each with 16-bit real and imaginary parts) 
indicated by the vertical rectangles. FIG. 11 showing how 
the prior art method will constantly cause eviction of good 
data and how each 8 byte line will only be 50% used. In 
contrast, FIG. 12 shows the preferred embodiment use of the 
whole cache line. 

The computation of the twiddle factors in the foregoing 
pseudocode of both the preferred embodiment and the prior 
art could be avoided by precomputation and Storage in a 
lookup table. But this implies another memory location 
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4 
Sequence and cache usage question. Indeed, prior art FIG. 3 
shows how the twiddle factors in the Second Stage Skip the 
odd powers of W, and the twiddle factors of the third stage 
skip three out of four powers of W. The prior art sparsely 
accesses the twiddle factor table in a similar chaotic manner 
to how it accesses data. 
Some preferred embodiments employ a redundant twiddle 

factor table with sequential memory locations for butterfly 
computations in all stages. Indeed, FIG. 9 shows the prior art 
twiddle factor table accesses and FIG. 10 preferred embodi 
ment accesses corresponding to the computations illustrated 
in FIGS. 3 and 1, respectively. The same table is used for 
each Stage in FIG. 9; this implies the access jumps in the 
middle Stages. In contrast, the preferred embodiment has a 
Separate portion of a redundant twiddle factor table for each 
stage which yields the sequential accesses. Of course, W=1, 
So the last Stage does not need any table lookups. 
The following general radix-4 section includes generation 

of a redundant twiddle factor table. 
Radix-4 FFT 
A radix-4 FFT has four-winged butterflies and twiddle 

factors as illustrated in FIG. 4a (FIG. 4b is an abbreviated 
version); and the middle stage butterflies again fall into 
disjoint groups of Overlapping butterflies as shown in the 
three-stage radix-4 FFT of FIG. 5. FIG. 5 illustrates a 
preferred embodiment radix-4 FFT and FIG. 6 the prior art; 
again the preferred embodiment Sequences through the 
butterflies of a block in the middle Stage, whereas the prior 
art jumps from block to block. 
A preferred embodiment FFT with a redundant twiddle 

factor lookup table can be described with the following code 
(written in C): 

First, presume the input data consists of an array X of N 
(a power of 4) complex numbers, XO+jX1, 
X2+jX3,..., Xi+jXi+1,..., with 16-bit real parts XO, 
X2, . . . and 16-bit imaginary parts X1, X3, . . . , and 
stored on word boundaries. Next, presume the twiddle 
factors, 1, W, W, ..., W. . . . with W=e', with 16-bit 
real and imaginary parts (cosines and Sines), are redundantly 
generated and stored in array w follows whre PI is a 16-bit 
approximation of TL and theta1, theta2, theta3, X t, and y t 
are double precision floating point numbers for accuracy: 
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-continued 

FIG. 4a shows the twiddle factors for the nth butterfly in the 
first stage form a group of four as W’ (=1), W", W-", and 
Wi", and the foregoing theta1, theta2, and theta3 correspond 
to the n, 2n, and 3n powers for n=i. Thus each butterfly has 
three nontrivial twiddle factors. 

The first (j=1) loop generates the 3N/4 nontrivial twiddle 
factors for the N/4 butterflies of the first stage and stores 
them in wO to w3N/4-1 in the order of use as indicated 
by FIG. 5 (FIG. 5 uses the abbreviated butterfly represen 
tation as in FIG. 4b rather than the FIG. 4a full version). In 
contrast, the Second (j=4) loop generates the 3N/16 non 
trivial twiddle factors for only a single block of butterflies of 
the second stage and stores them in w3N/4 to w3N/4+3N/ 
16-1; this is the order of use within a block as indicated by 
FIG. 5. The nth butterfly within each of the four blocks of 
the Second Stage uses the same group of four twiddle factors: 
1, W", W", and W'"; of course, W' is just the W for a 
block of one quarter the Size of the original. These Second 
stage twiddle factors form a subset of the twiddle factors 
Stored for the j=1 loop, but the accessing of them would not 
be sequential, So the preferred embodiment employs this 
redundant Storage to maintain the Sequential memory access. 

Similarly for Subsequent loops: the block size and number 
of nontrivial twiddle factors to be generated and stored 
reduces by a factor of 4 for each Stage. Thus the total number 
of twiddle factors Stored is 3N/4+3N/16+3N/64+...+3=3N/ 
4*(1+/4+/16+...+4/N)-3N/4*4/3=N. This compares to the 
prior art table of 3N/4 entries; so the preferred embodiment 
twiddle factor table is only 33% larger. 

The following function performs the FFT and stores the 
results in the same locations as the initial data but with the 
usual digit-reversed address (for radix-4 a digit is 2 bits and 
for radix-2 a digit is 1 bit): 

void ft4(int in, short ptr XI, short ptr w) { 
int i, j, l1, 12, h2, pred; 
int l1p1, 12p1, h2p1, tw offset, stride, fift imp; 
short Xt0, yto, Xt1, yt1, xt2, yt2; 
short si10, si2O, si30, co10, co20, co30; 
short xhO, xh1, xh20, xh21, x10, x11, x120, x121: 
short X 0, x 1, X 11, X 11p1, X h2, X h2p1, X 12, X 12p1; 
short *x, *w, *x2, x0; 

stride = N: 
tw offset = 0; 
while(stride > 1) { 

j = 0; 
ft imp = stride + (stride>>1); 
h2 = stride>>1; 
l1 = stride: 
12 = stride + (stride>>1); 
X = prt X; 

1O 
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-continued 

Note that the foregoing C code is optimized for the standard 
compilers for the 320C6211 DSP manufactured by Texas 
Instruments. 

Cache Usage 
FIG. 7 illustrates a 320C6211 DSP with 32 B cache lines 

for the first level 4 KB data cache. (The DSP also has a 
second level cache on-board.) Thus with 16-bit real and 
imaginary parts, 8 radix-4 butterflies can be computed with 
four cache lines for data and three cache lines for twiddle 
factors without the need to acceSS level 2 cache or external 
memory; this implies increased Speed compared to the prior 
art FFT. Indeed, the prior art FFT would refill the cache lines 
for data for each Successive butterfly (except in the last stage 
in which two butterflies could be computed prior to refilling 
the cache lines for data and the first Stage in which all 
accesses are linear); but the same twiddle factor is used for 
all butterflies computed by the inner loop. 
SIMD Transformation 
SIMD (single instruction multiple dispatch) transforma 

tions can be performed on algorithms where the data 
accesses form a linear pattern. For example, a convolution 
used in an FIR filter Such as 

yi = 0 
for(j = 0 to n) { 
y += xi-ji hi 

can be unrolled to form 
yi = 0 

Now the data pairSh, hi+1 can be loaded as Single data 
object; similarly the data pair Xi-ji, Xi-(+1) can be loaded 
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as a Single data object. Then a complex multiplication 
operation (e.g., cmpy) can be used in the unrolled form: 

The unrolled preferred embodiment can leverage Such 
operations. The accesses are more FIR-like than FFT-like. In 
the prior art FFT the loops cannot be unrolled and merged 
together as the accesses jump about as illustrated for the 
middle stage in FIG. 6. The preferred embodiment loops can 
be unrolled and memory accesses merged to take advantage 
of wider memory interfaces such as LDDW of the 
TMS320C6701 DSP manufactured by Texas Instruments 
where 2 words are loaded at once. Also, more massively 
paralleled instructions Such as paired multiplies and adds 
and subtracts can be leveraged and the FFT parallelized. See 
the unrolled butterfly illustrated in FIG. 4c. The exception is 
the last iteration when such butterfly blocks only access two 
pieces of data before jumping. But this last pass can be 
accommodated using a simple loop containing only adds and 
subtracts. FIG. 8 illustrates the pattern of accesses of pairs 
of data; the amount of unrolling can be varied to utilize more 
parallelism, up to the block size per Stage. The following 
code implements the paired unrolling as in FIG.8 with the 
last Stage Separately handled. 

void ft4(int in, short ptr XI, short ptr w) { 
int i, j, l1, 12, h2, pred; 
int tw offset, stride, fift imp; 
short Xt0, yto, Xt1, yt1, xt2, yt2; 
short Xt0 1, yto 1, Xt11, yt11, Xt2 1, yt2 .1; 
short si10, si2O, si30, co10, co20, co30; 
short si11, si21, si31, co11, co21, co31; 
short xhO, xh1, xh20, xh21, x10, xl1, x120, x121: 
short Xho 1, xh1 1, xh2O 1, xh21 1, X10 1, xl1 
short *x, *w, x2, x0; 
stride = N: If N is the number of complex samples 

1, X120 1, X121 1; 

tw offset = 0; 
while(stride > 4) { // do all but last stage 

j = 0; 
ft imp = stride + (stride>>1); 
h2 = stride>>1; 
l1 = stride: 
12 = stride + (stride>>1); 
X = prt X; 

si10 = wi: 
co10 = wi-1: 
si2O = wi-2); 
co20 = wi-3); 
si30 = wi-4); 
co3O = wi--5: 
si11 = wi-6): 
co11 = wi--7; 
si21 = wi--8; 
co21 = wi--9: 
si31 = wi-10): 
co31 = wi-11): 
j += 12; 
xhO = xO + x11; 
xh1 = x1 + x11+1): 
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-continued 

The preferred embodiments can be varied in many ways 
while retaining the feature of an FFT with sequential 
memory location butterfly computations. For example, a 
radix other than 2 or 4 could be used, the number of Stages 
could be larger (e.g., a 4096-point FFT with radix equal to 
4 would have six stages), the precision of the data could be 
varied, the butterfly can employ Saturation and/or rounding 
to improve precision and Stability. 
What is claimed is: 
1. A fast Fourier transform method, comprising the Steps 

of: 
(a) storing data in sequence in memory; 
(b) partitioning a fast Fourier transform into three or more 

Stages, 
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(c) within each of Said Stages ordering the butterfly 
computations to correspond to Said Sequence; and 

(d) providing a redundant twiddle factor table including a 
first set of twiddle factors plus a second set of twiddle 
factors wherein Said Second Set is a Subset of Said first 
Set. 

2. A fast Fourier transform method, comprising the Steps 
of: 

(a) providing N-point data where N is a positive integer, 
(b) computing radix-R butterflies in a block of N/R 

overlapping butterflies of Said data where R is a posi 
tive integer, 

(c) computing radix-R butterflies in a first block of N/Rf 
overlapping butterflies of the results of Step (a); and 

10 
(d) after Step (c) computing radix-R butterflies in a second 

block of N/R overlapping butterflies of the results of 
Step (a); and 

(e) providing a redundant twiddle factor table including a 
first set of twiddle factors plus a second set of twiddle 
factors wherein Said Second Set is a Subset of Said first 
Set. 

3. The method of claim 2, wherein: 
(a) R equals 2. 
4. The method of claim 2, wherein: 
(a) R equals 4. 


