
United States Patent
72 Inventor Kenneth L. Thompson

Chatham Township, Morris County, N.J.
21) Appl. No. 659,389
(22 Filed
45) Patented
73) Assignee

Aug. 9, 1967
Mar. 2, 1971
Bell Telephone Laboratories, Incorporated
Murray Hill, N.J.

54 TEXT MATCHING ALGORITHM
8 Claims, 3 Drawing Figs.

3,568,156
3,350,695 10/1967 Kaufman et al............. 340, 72S
3,374,486 3/1968 Wanner........................ 340, 72.5
Primary Examiner-Paul J. Henon
Assistant Examiner-Mark Edward Nusbaum
Attorneys-R. J. Guenther and William L. Keefauver

ABSTRACT: A general purpose computer program and spe
cial purpose apparatus for matching strings of alphanumeric
characters are disclosed. The algorithm involved makes use of
a current-character search list (augmented for all alternative
characters) and a next-character search list (augmentec for all

(52) U.S. Cl.. 340,172.5 successful character matches). These characters are portions
5 i ... G06f 73 of the test text to which the string to be matched is compared.
(50 Field of Search.. 340, 72. Each character of the string to be matched is tested by the cur
56 References Cited rent character list, during which time the next character list is

compiled. Then a new character is obtained, the next
UNITED STATES PATENTS character list substituted for the current character list, and the

3,07,343 10, 1963 Poole 34(fl. 72.5 process continues. The process terminates successfully when
3,147,343 971964 Meyer et al................. 34041 72.5 test text characters are exhausted, and terminates unsuccess
3,290,661 12; 1966 Belcourt et al............... 340, 72.5 fully when the searched text to be matched is exhausted.

| Avf 7)

(All 57)
Ay:

CaAAC7EAR
saa ACA GE

Chaff

37 rer- Get ME7

(AcHG) Elpty

wove wers r (c. 157)
CAARARAW7

CAaaaat?AA

Away 7 sig"
CE

TCAy
WWSESSAL Stil

': A
ESAt
two)

PATENTED MAR 2197

SHEET 2 OF 3

&/37/ S/9 3787

Op

3,568,156
1

TEXT MATCHING ALGORTHM

BACKGROUND OF THE INVENTON

1. Field of the invention
This invention relates to data processing systems and, more

particularly, to text matching arrangements for such systems.
It has become common to utilize data processing machines

to process text as well as numerical data. Information retrieval
and text editing arrangements, for example, are becoming
more useful and in greater demand due to the explosion in
scientific and technical literature. One of the basic machine
capabilities for such applications is the ability to match text,
either for gaining access to certain indexed materials or for
making changes in the matched text. Since this is a basic
requirement and must be performed many times, it is desirable
that such capability be implemented to operate as rapidly as
possible and to require as little machine complexity as is feasi
ble.

2. Description of the Prior Art
It has been customary, in text matching, to test one unit at a

time, usually a character, and to continue testing in a serial
fashion. That is, the first character to be tested is compared to
the first character to be matched. If successful, the second
character to be tested is compared to the second character to
be matched. If this comparison also produces a match, the
process is continued, a character at a time, until the entire ex
pression to be matched is in fact matched, or until a failure oc
curs. When a failure occurs, the testing sequence must return
to the character in the expression to be tested which was the
second character of the partially successful match. This
character is then tested against the first character to be
matched and the entire process repeated. Partially successful
matches therefore give rise to multiple overlapped subgroup
matching sequences requiring an elaborate accounting system
to keep track of the status of the overall search.

BRIEF DESCRIPTION OF THE INVENTION

In accordance with the present invention, searches for
matching strings of elemental units are conducted in a parallel
fashion in that, at any one time, the search may be going on in
a plurality of different substrings. This is accomplished by as
suming that each new unit (character) may be the beginning
of a matching expression, and testing it for that possiblity. If a
match occurs, there is stored the identification of the next
character to be matched. If a partial match or matches has al
ready occurred, the new character is also matched against the
next possible characters in each of those substrings. Successful
matches here also result in the storage of the identifications of
other possible next characters. When the tests for all of the
possible current characters is completed, a new character to
be tested is obtained and the stored identifications similarly
tested one at a time. At this time, of course, the new character
is also compared to the first character of the expression to be
matched to initiate any possible new substring matches.
The list of stored next character identifications is preferably

merely a list of pointers to the appropriate tests for those
characters. The tests are then executed, one at a time, and a
new list of next character tests assembled, one entry for each
successful test.
The above described method and apparatus for implement

ing this method is considerably faster than prior art text
matching methods. It has the further advantage, however, of
being compatible with generalized forms of expressions to be
matched. Up to the present, only literal expressions have been
considered, i.e., expressions in which each unit (character)
must be matched by one unit (character) on a one-for-one,
identical, basis. More useful matching can be accomplished if
room is left for alternatives for one or more characters.
An expression which is written so as to leave room for such

alternative matches can be called a "regular expression' and
is distinguished by the inclusion of special characters which
serve as operators. That is, the operators in a regular expres

O

15

25

30

35

40

45

50

55

60

65

70

75

2
sion are not characters to be matched, but directions on how
to perform matches with other characters.
A regular expression, then, is a concatenation of characters

and operators representing symbolically all of the possible
character strings which produce successful matches. It is
closely analogous to an algebraic expression in which opera
tors are also used to indicate required relationships between
operands. In an algebraic expression, for example, simple jux
taposition of symbols implies multiplication. In a regular ex
pression, such juxtaposition represents a requirement for coin
cidence of the characters in that order. It is similar to the logi
cal AND operator, but is implied rather than explicit.
As in algebraic expressions, the juxtaposition of characters

gives rise to regular expression "terms' which can themselves
be combined with other characters and/or terms by another
operator. Terms in an algebraic expression, for example, can
be related by the "--' and '-' operators. Similarly, terms in a
regular expression can be related by the disjunctive operator
(the OR operator). This operator operates much like the logi
cal OR operator, indicating that either of two terms are al
ternates for successful matching. In its simplest form, the regu
lar expression, therefore, is a string of one or more terms
joined by OR operators. As in algebraic expressions, however,
parentheses can be used to delimit juxtaposed characters,
terms or entire expressions which are to be used as operands
in a higher order regular expression. Moreover, an operator
called the "closure' operator, can operate on any character,
term or expression to indicate an indefinite number of repeti
tions of the operand, including zero repetitions. This operator
provides a useful short-hand method of representing repeti
tions without explicit listing of the alternatives.
The commonly accepted definition of regular expressions

found in the art includes only the juxtaposition operator (im
plied), the OR operator (" ") and the closure operator ("*").
Since many other useful operators can be defined, the term
"extended regular expressions' has been used to indicate ex
pression including any of these further operators. These might
include, for example, the NOT operator, indicating any
character (term, expression) but the operand, the exclusive
OR operator, indicating either one, but not both, of two
operands, operators satisfied by any single character, opera
tors representing physical positions in the printed text
(beginning of line, end of line, etc.), and so forth.

In further accord with the present invention, regular expres
sions can be recognized using the same technique as was
described for literal expressions. The operators, however,
cause branches in the search execution in order to explore all
of the alternatives. When an alternative is encountered, one of
the alternatives is appended to the current search list while the
other is explored immediately. Matching on either alternative,
of course, causes storage of the identification of the next
character.
The major advantage of searches for regular expressions

rather than for literal expressions lies in the far greater flexi
bility this gives to a single search, thereby easing considerably
the task of specifying the expression to be searched for.
These and other features, the nature of the present inven

tion and its various advantages, will be more readily un
derstood upon consideration of the attached drawings and of
the following detailed description of those drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:
FIG. 1 is a functional block diagram of the text matching al

gorithm in accordance with the present invention;
FIG. 2 is a schematic block diagram of special purpose elec

tronic apparatus for practicing the text matching of the
present invention; and

FIG. 3 is a functional block diagram of the modified and im
proved version of the text matching algorithm of the present
invention useful for matching regular expressions.

3,568,156
3

DETAILED DESCRIPTION

Before proceeding with the detailed description of the
drawings, it may be well to note that the present invention is
concerned with matching at least two different coded
sequences of electrically represented information. It is com
mon in modern digital technology to represent alphabetic
characters as well as numeric information in coded groups of
pulses. In modern digital computers, for example, alphanu
meric information is generally represented in some binary
coded form. Thus, a group of six pulse positions can be used to
represent 2 different alphanumeric characters (i.e., 64 dif
ferent characters). Such representations are useful, for exam
ple, in representing computer generated information to a
human observer. Indeed, it has lately become commonplace
for the computer to be used for processing alphanumeric in
formation itself in such contexts as machine searching and text
editing.
One of the most basic alphanumeric information processing

steps is that of matching, on a character-by-character basis,
two different strings of alphanumeric data. Such text matching
requires that each character of the searched text be com
pared, one character at a time, to the characters of the test
text. Since the test text can theoretically be matched by any
substring of the searched text, it must be assumed during such
a search that each character of the searched text may be the
beginning of a matching substring. For this reason, some form
of organized search must be conducted and records kept on all
of the partially successful text matches since it is not known
ahead of time which of these partially successful matches will
ultimately produce a completely successful match.
Once the character strings have been represented as coded

sequences of electronic signals, such text matching can be
easily accomplished by means of electronic apparatus. Such
apparatus can take the form of a general purpose digital com
puter specially programmed to perform the text matching. On
the other hand, special purpose circuitry, which is wired
together sc as to ensure the proper sequence of steps in the
text matching procedure, can be used equally well. The
present invention will be described with respect to both of
these types of implementation. It is to be understood, how
ever, that the implementation achieved by programming a
general purpose computer is by far the superior alternative.
This is true because of the wide availability of general purpose
computers, the ease of programming these computers to per
form the desired text matching, and the simplicity in modify
ing details of the procedure as circumstances warrant.

It can thus be seen that, in its broadest aspects, the present
invention is an algorithm for matching at least two different
strings of texts. In this connection, the term "algorithm'
means any self-consistent set of ordered steps specifying
definable operations upon data and leading to a particular
result. This definition, while somewhat broader than the
definition heretofore accepted in the field of mathematics, has
nevertheless become standard in the computer programming
art.

Turning to the drawings, in FIG. 1 there is shown a func
tional block diagram illustrating the operation of the text
matching algorithm for literal expressions in accordance with
the present invention. The illustration of FIG. 1 comprises the
plurality of labeled boxes, each of which represents a subfunc
tion in the text matching process and each of which can be im
plemented by programming a general purpose computer. One
such implementation will be given in detail to illustrate the
specific form of the programming routines.

In FIG. 1, box. 10 represents the origin of the process and is
connected by a directed arrow to box i. 1. Box 11 specifies that
a list maintained by box 12 and called NLIST be transferred to
box 13, labeled CLIST. Box 11 is connected by a directed
arrow to box 14 which is labeled "GET NEXT CHARAC
TER" and specifies the function of retrieving the next
character from the searched text. If the searched text is ex

O

15

25

35

40

50

55

60

65

70

75

4
hausted, an indication is provided by way of directed arrow 15
which indicates that the match has not been successful. That
is, if the searched text is exhausted and a match has not yet
been successful, it is clear that the searched text does not in
clude a matching substring. Such a condition terminates the
search and marks it as unsuccessful.
Box 14 is connected by a directed arrow to the dashed box

16 which represents the test text as a sequence of the in
dividual character tests, one for each character of the test text,
and in the sequence given by the test text. For convenience,
these tests have been represented in FIG. 1 by boxes labeled
TEST1, TEST2, etc., i.e., numerically identified test boxes 17,
18. 19. Each of the test boxes 17 through 19 compares the
character from the searched text obtained by box 14 to one of
the characters of the test text and produces an indication of a
successful (S) match on leads 20, 21 or 22, respectively, or of
an unsuccessful (F) match on leads 23, 24 or 25, respectively.
TEST box 17 is accessed by way of lead 26 from box 14. The
remainder of the test boxes 18 through 19 are accessed by way
of entries made in CLIST box 13 by way of lead 27.
The final box within dashed box 16 is success box 28 which,

when it is arrived at, indicates that all the successive tests have
been successful and, thus, that the test text has been success
fully matched. An indication of this successful match condi
tion is given by way of lead 29 which also terminates the text
matching process with an indication of success.

Each successful test in boxes 17 through 19, as indicated on
leads 20 through 22, enables box 30 to add the identification
of the next successive test to the list in NLIST box 12. That is,
a successful test in test box i causes the addition of an entry to
NLIST 12. This entry identifies the next succeeding test box,
i.e., test box (i+1), to NLIST box 12. Thereafter, CLIST box
13 is addressed by way of lead 31 to cause CLIST box 13 to
provide its next entry as a command by way of lead 27 to ena
ble the identified one of test boxes 17 through 19.
The manner in which the process illustrated in FIG. I

operates will now be considered. In its broadest outline, the
text matching algorithm in accordance with the present inven
tion operates by maintaining two separate lists of individual
character tests to be performed. Since only one character of
the searched text is accepted at a time, these lists represent
comparisons to be made between the current searched text
character and identified ones of the test text characters,
CLIST 13, for example, is a list of all of the tests 17 through 19
to which the currently available searched text character is to
be applied. These identifications, of course, are utilized by
way of lead 27 to enable each of the identified tests in succes
S10.

NLIST 12, on the other hand, is a list of the test text
character tests which are to be enabled when the next suc
ceeding character is obtained by way of box 14. An entry is
made in NLIST 12 for each successful character match in
dicated by test boxes 17 through 19. When CLIST 13 is ex
hausted, an indication on lead 32 causes box l l to move the
contents of NLIST 12 to CLIST 13. That is, when the current
character search is completed, the next character search list
complied during the previous current character search
becomes the new current character search list. lt will be noted
that the sequence of the tests on lists 12 and 13 are immateri
al, since each test must be performed on the same searched
text character and the order of doing so does not affect the ef
ficacy of the process.
The text matching algorithm described in connection with

FIG. 1 is to be compared with heretofore proposed text
matching algorithms in which each partially successful sub
string match is pursued until it ultimately produces a success
ful or an unsuccessful match. If the match proves to be unsuc
cessful, the matching process must then return to the test text
character next succeeding the beginning of the discarded and
partially successful match. This prior art matching algorithm
requires elaborate record keeping in order to continue the
search after each unsuccessful substring match.

3,568,156
S

The present invention. on the other hand, searches the text
in a parallel fashion such that all possible character matches
are attempted for each character as it is obtained. In this con
nection, it will be noted that immediately following the
retrieval of the next character by box 14 in F.G. 1, an attempt
is made by way of lead 26 to match the new character with the
first character of the test text by way of the test box 17 Thus,
partially successful matches indicated by the entries on NLIST
12 can be supplemented by a new partially successful match
on the first character by box 17. Such parallel searching is ex
tremely efficient, particularly when the test text comprise
highly redundant character strings such as are found in the En
glish language.

In summary, the text matching algorithm of the present in
vention comprises the following steps:

1. Compare each new character of the searched text to the
first character of the test text.

2. Compare each new character of the searched text to the
characters identified on a current list of test text charac
ters,

3. For each successful character match, add the identifica
tion of the next test text character to a list of next
character tests.

4. When the current list of test text characters is exhausted,
substitute the list of next character tests for the current
character test list, secure the next searched text
character, and proceed to Step 1.

... if the last test text character is successfully matched, the
entire test text has been successfully matched; if the
searched text is exhausted the test text cannot be success
fully matched.

For convenience, the algorithm illustrated in FIG. 1 will be
implemented by programming routines written in the FAP
symbolic language suitable for assembly and execution on the
IBM 7094 general purpose computer. A detailed explanation
of this computer and of the FAP language can be found in the
"IBM 7094 Principles of Operation," File 07094-01, Form
A22-6703-Bl, Copyright 1959, 1960, 1961, 1962 by Interna
tional Business Machines Corporation. Similar implementa
tions in other languages for other general purpose computers
will be readily apparent to those skilled in the art.

Before the text matching algorithm illustrated in FIG. 1 can
be executed, it is necessary to provide the test text testing
facilities represented by dashed box 16 in FIG 1. This may be
done in many different ways, including program sequences
written by the individual programmer. It is considerably more
convenient, however, particularly where a number of different
test texts are to be matched, if the testing sequence can be
generated automatically in response to the test text itself. One
such automatic test generating facility will be illustrated as a
test text compiler written in the ALGOL 60 language. This
language is well known to those skilled in the programming art
and is described in "Report on the Algorithmic Language
ALGOL 60,' by P. Naur and appearing in Communications of
the Association for Computing Machinery, Vol. 3, page 299,
May 1960.
A compiler routine for assembling FAP instructions for the

test code required by a dashed block 16 of FIG. 1 and written
in the ALGOL 60 language is shown in Table .

TABLE I

Literal Expression Test Compiler
procedure compile;
begin

integer char, pc,
integer procedure get character; code,
integer procedure command (op, address, tag, decrement);

code:
own integer eof.
integer array code (0:300:

O

25

30

35

4.

50

55

60

65

70

75

pc (),
advance:
char = get character,
if char = eof then go to end-of-file;
codepo = command(txi, fail, 1, char-);
code pc-1 is command(th, fail', l, char),
code pc-2:F command(ts, "nnode', 4);

pc = pc-3;
go to advance,

end-of-file:
codepc) = command(tra, found');
pc = pc-1,

end,
It will be noted that the programming routine of Table in

cludes the functions “get character' and “command." The
former function serves to obtain the next succeeding
character of the test text. The latter serves to compile a FAP
instruction having the fields specified in its arguments. That is,
the instruction fields are given in the sequence: Operation
code field, address field tag field, and decrement field, all in
accordance with well-known FAP assembly language ter
minology. The 'eof' symbol stands for an end-of-file indica
tion following the last character of the test text. This may be
any suitable character, arbitrarily chosen, and therefore has
not been explicitly defined in Table I.
The compiler illustrated in Table I serves to generate the

code sequence which comprises the contents of dashed box 16
in FIG. 1. An illustration will make this apparent. If, for exam
ple, it is assumed that the test text comprises the string ABCD,
then the compiler of Table I will generate the code sequence
shown in Table I.

TABLE II

Illustrative Test Code for ABCD

TXL FAIL, 1, A-1 TEST FOR A
TXH FAIL.1, A
TSX NNODE4
TXL FAIL, 1, B-1 TEST FOR B
TXH FAIL, 1, B
TSX NNODE4
TXL FAIL1, C-1 TEST FORC
TXH FAIL, 1, C
TSX NNODE,4
TXL FAIL.1, D-1 TEST FORD

CODE TXH FAIL.1, D
CODE TRA FOUND TEST TEXT EXHAUSTED

In Table II the alphabetic characters within quotation marks
represent binary coded equivalents of those characters. Thus,
if the character A is coded as 010001, the storage cells of the
decrement of the first instruction of Table I will contain
0 10000 (01.0001-000001).

It can be seen that the code of Table II provides three in
structions for each character of the test string. A first instruc
tion tests to see if the searched text character in index register
1 is equal to or less than the test text character minus 1. If so, a
transfer is taken to a location labeled FAIL. The next instruc
tion tests to see if the searched text character in index register
1 is greater than the test text character and, if so, control is
likewise transferred to FAIL. If neither of these tests result in a
transfer, the searched text character matches the test text
character and the third instruction transfers control to a loca
tion labeled NNODE and saves the current location in index
register 4.
The location NNODE is the beginning of a subroutine

which corresponds to the functional block 30 in FIG. 1. The
contents of index register 4, incremented by one, represents
the location of the next test in Table II. The last entry of Table
I transfers control to a location FOUND, indicating that the
text matching was successful. This corresponds to box 28 in
FIG. 1. The actual procedure to be followed when the match is

CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE

3,568,156
7

successful depends upon the context in which the present in
vention is used and has not been specified in Table II. This
procedure, of course, can vary all the way from terminating
the process at this point and putting out an indication of suc
cessful match or can comprise a transfer to the next step in a
larger data processing procedure.

In Table III, there is shown the plurality of computer pro
gram subroutines written in the FAP assembly language which
are necessary to implement the balance of the text matching
process illustrated in FIG. 1.

TABLE II

Search Execution Subroutines

NNODE SUBROUTINE-ADDS ONE ENTRY TO THE
NEXT

CHARACTER SEARCH LIST
NNODE AXC **, 7 LOAD NCNT INTO INDEX RE
GISTER 7
NNODE PCA 4 GET CURRENT LOCATION IN
CODE
NNODE ACL TSXCMD ADD TSXCMD INSTRUC
TION TSX 12
2
NNODE SLW NLIST, 7 APPEND NEW ENTRY TO
NLIST
NNODE TXI --, 7, -1 INCREMENT NCNT BY ONE
NNODE SCA NNODE, 7 SAVE NEW NCNT IN AD
DRESS OF NNODE
NNODE TRA 1, 2 RETURN TO NEXT ENTRY ON
CLIST
w

TSXCMD TSX 1, 2 NLIST GENERIC INSTRUCTION
* CLIST BSS 50 RESERVESTORAGE FOR CLIST
NLIST BSS SO RESERVESTORAGE FORNLIST

NT SUBROUTENE-INITIALIZES FOR EXPRESSION
SEARCH

NIT SCA NNODE, 0 INITIALIZE NCNTAT ZERO
TRA XCHG START FIRST CHARACTER SEARCH

XCHG SUBROUTENE-STARTS NEW CHARACTER
SEARCH

XCHG LAC NNODE, 7 LOAD NCNT INTO INDEX
REGISTER 7

AXC 06 LOAD ZERO INTO INDEX REGISTER 6
LOOP TXL ADCMD, 7, 0 F NCNT ZERO, GO TO
ADCMD
LOOP TXI *-i-1, 7, 1 DECREMENT NCNT BY ONE
LOOP CAL NLIST, 7 GET NXT NLIST ENTRY
(STARTATBTM)
LOOP SLW CLIST, 6 10 STORE IN CLIST (START AT
TOP)
LOOP TX
GO TO LOOP
AOCMD CAL TRACMD GET TRAXCHG ENSTRUC
TION
ADCMD SLW CLIST, 6 APPEND TO END OF CLIST
ADCMD SCA CNODE, 6 SAVE NCNT IN ADDRESS
OF CNODE

LOOP, 6, -1 INCR. CCNT BY ONE AND

ADCMD SCA NNODE, 0 INITIALIZE NEW NCNTAT
ZERO
ADCMD TSX GETCHA, 4 GET NEXT CHARACTER
TO BE TESTED
ADCMD PAX SAVE CHAR IN INDEX REGISTER 1

10

15

20

25

30

35

40

45

50

55

60

65

70

75

8
ADCMD TSX CODE, 2 START SEARCH AT TOP OF
CODE
ADCMD TRA CLIST CONTINUE SEARCH IN CLIST
sk

TRACMD TRA XCHG CONST INSTRUCTION FOR
ABOVE SUBR
xk

FAIL SUBROUTINE COMMON RETURN FOR MATCH
FAILURES

:

FAIL TRA 1,
CLIST

2 RETURN TO NEXT ENTRY ON

The first subroutine in Table III, called the NNODE subrou
tine, serves to add one entry to the next character search list
identified as NLIST 12 in FIG. 1. For the purposes of this
subroutine, a count of the number of entries in NLIST is main
tained in index register 7. Thus, the first instruction of the
NNODE subroutine loads this count into index register 7. The
second instruction places the address of the location from
which this subroutine was called into the accumulator register
from index register 4. The third instruction adds the contents
of symbolic location TSXCMD to the contents of the accumu
lator register. The accumulator register then contains the bi
nary equivalent of an instruction having TSX in the operation
field, having the location one past the calling location in the
address field and the numeral 2 in the tag field.

in the fourth instruction, the contents of the accumulator
register are appended at the end of NLIST at the position i:-
dicated by the contents of index register 7. At the fifth instruc
tion of NNODE, the NLIST count is incremented by one and,
at the sixth instruction, this new count is stored in the address
of the location NNODE. The final instruction of the NNODE
subroutine returns control to the next entry on CLIST as in
dicated by the contents of index register 2.

Following the NNODE subroutine is the generic command
TSXCMD and blocks of storage reserved for the CLIST and
NLIST lists themselves.
The second subroutine on Table III, called the NIT subrou

tine, is the equivalent of box. 10 in FIG. 1 and initializes for an
expression search. INIT includes only two instructions, the
first of which initializes the NLIST count at zero, and the
second of which is a transfer to the XCHG subroutine.
The third subroutine in Table II is the XCHG subroutine

which is represented in FIG. 1 by the dash.d box 33. As is
noted in FIG. 1, the first function to be performed is to move
the contents of NLIST 12 to CLIST 13. To this end, the first
instruction loads the NLIST count into index register 7 while
the second loads zero into index register 6. The third instruc
tion, labeled LOOP, tests the contents of index register 7 (the
NLIST count) and if it is equal to or less than zero, transfers
control to the location ADCMD. The next instruction decre
ments the NLIST count by one and is followed by an instruc
tion which retrieves one entry from NLIST, to be immediately
stored in CLIST by the following instruction. The next instruc
tion increments the CLIST count in index register 6 by one
and transfers control to the instruction LOOP.

It can be seen that the five instructions starting at LOOP
serve to transfer the contents of NLIST to CLIST. The process
is terminated when the NLIST count is reduced to zero, as in
dicated by the test at location LOOP. Control is then trans
ferred to instruction ADCMD at which time the instruction at
location TRACMD is placed in the accumulator register. The
contents of the accumulator register are then placed at the
end of CLIST. The new CLIST count in index register 6 is
placed in the address of a location CNODE (to be described
hereinafter). The new NLIST count is reinitialized at zero and
a transfer takes place to a subroutine which obtains the next
character to be tested. A FAP subroutine suitable for this pur
pose forms a portion of the subject matter of the copending
application of M. D. McIlroy (Case 1), Ser. No. 4 7,973, filed

3,568,156
9

Dec 14, 1964, and assigned to applicant's assignee. This new
character is stored in index register 1 for ease in making sub
sequent comparison tests. Thereafter a transfer takes place to
the first test representing the test text, corresponding to box
17 in FG 1. This test, of course, corresponds to the initial lo
cation in the programming sequence of Table II. When this
test is completed, control is transferred to the first entry on
CLIST to complete the current character search.
The last subroutine in Table III is the FAIL subroutine and

comprises a single instruction which transfers control to the
next entry on CLIST, as represented by the contents of index
register 2.

It can be seen that the FAP coding of Tables II and III serve
to implement the algorithm outlined in FIG. 1. In general,
each functional requirement of FIG. 1 is implemented by a
program subroutine which is called into operation when that
function is required. The leads in FIG. 1, therefore, actually
represent transfers between the various routines as deter
mined by the described condition. The lists illustrated by
boxes 12 and 13 are no more than transfer instructions to ap
propriate location in the block of coding illustrated by dashed
box 16 in FIG. 1 and shown in Table I. Since these tests led
be repeated only once to be executed any desired nun her if
times, substantial amounts of redundant test coding are
avoided. The bookkeeping operations for keeping track of all
partially successful string matches is automatically taken care
of by the entries in CLIST 13 and NLIST 12. As previously
noted, the parallel search technique embodied in this al
gorithm requires that each searched text character be con
sidered for matching only once during the entire string
matching sequence.
Although it is less likely that the algorithm of the present in

vention will be implemented by means of special purpose cir
cuitry, such circuitry is illustrated in fig, 2 to indicate the
general nature of the algorithm involved. Thus, in FIG. 2 a test
string register 40 is utilized to store the test text characters in
the proper sequence as represented by the numbered subdivi
sions of register 40. A searched text register 41 stores the
searched text which is to be matched against the test text
string. The entire circuit of FIG. 2 is driven by clock pulses on
clock pulse lead 42.
The CLIST and NLIST lists are implemented in FIG. 2 by

shift registers 43 and 44, respectively. Each of shift registers
43 and 44 is adapted to store a plurality of coded test identifi.
cations corresponding to the numerical indentifications of the
test text characters in register 40. That is, test text character
01 is identified in registers 43 and 44 by a coded representa
tion of the numeral 1. The remaining test text characters are
similarly identified in registers 43 and 44.
Assuming initially that CLIST shift register 43 is empty, an

empty indication on lead 45 disables inhibit gate 46 to prevent
the application of clock pulses from lead 42 to advance shift
register 43. At the same time, the signal on lead 45 enables
gate 47 to transfer, in parallel, the contents of NLIST shift re
gister 44 to CLIST shift register 43. At the same time, a coded
representation of the number 1 is transferred to the first or
leftmost storage position of CLIST shift register 43 by way of
lead 48. This same signal on lead 45 also enables gate 49 to
transfer one character of the searched text string in register 41
to character store 50,

After the termination of the empty signal on lead 45, the in
hibit gate 46 is reenabled and a clock pulse is applied to shift
register 43 to advance one test character identification from
shift register 43 to lead 51. This coded identification is applied
to decoder 52 which decodes the numerical code and applies a
signal to the correspondingly numbered one of output leads
53. Since the first coded identification to be shifted out of shift
register 43 is the one inserted by lead 48, the lead identified by
number 1 from decoder 52 is energized to enable the cor
responding gate 54. Other coded identifications, of course,
would operate in a similar manner to enable one of the other
gates 55 through 56.

O

25

35

40

45

55

60

65

70

75

O
When thus enabled, the operated one of gates 54 through

56 supplies the corresponding one of the test text characters in
register 40 to a compare circuit 57. At the same time, the con
tents of character store 50 are also applied to compare circuit
57. If these characters are identical, compare circuit 57
produces an output on lead 58 to enable gate 59. If the charac
ters are not identical, no output is produced by compare cir
cuit 57.
The output of shift register 43 on lead 57 is applied to ad

ding circuit 61, where it is incremented by one, and then ap
plied to gate 59. If gate 59 is enabled by a signal on lead 58,
the incremented coded identification from circuit 61 is sup
plied to NLIST shift register 44. It can thus be seen that each
successful character match operates to store in register 44 an
identification of the next test text character in register 40.
The next clock pulse on lead 42 shifts the next test

character identification out of register 43 and the above
described process is repeated. If no character match is in
dicated by a signal on lead 58, nothing further happens until
the next clock pulse appears on lead 42. This process is con
tinued until CllST shift register 43 is again empty and again
produces an output signal on lead 45. At this time the entire
ocess is repeated, this time with a new searched text

character in character store 50.
If the searched text store 41 is emptied, a signal is produced

on output lead 62 indicating failure to match the test text. If
the test text character identification exceeds by one the last
inth) test text character, an output signal is produced on lead
63 indicating that the test text has been successfully matched.
The circuit arrangement of FIG. 2 can be implemented by

combining many well-known circuits within the skill of per
sons of ordinary skill in the logic circuit art. As an example,
the entire circuit of FIG. 2 can be realized with integrated cir
cuit chips supplied commercially by the Digital Equipment
Corporation, Maynard, Massachusetts, and described in their
C-105 catalog entitled "The Digital Logic Handbook-Flip
Chip Modules," 1967 Edition, Number 1750, Mar. 1967.
The various circuits of FIG.2 may be realized with integrated
logic circuits as detailed below:

Description of Digital Equip. Corp Catalog fircuit element implementation Page
Registe' i? R202 Flip-flops----. 71
Register 41 -- . . . - - - - - - - - - - do----------- 7.
Shift Register 43. . . . Kit D007, using 26
Shift Register 44. . . .do- 26
Cate 6--- R113 NAND NOR Gates--------. 0.
(at 4... - - - R002 Diode Networks... 57
(ate 48... -do------- 57
(late 49.-- - - - - - - -do--- 37
Store 5. R202 Flip-flops.------.
Decode 32 R15 Decoder - 56
(lates 54-56. R002 Diode Networks..... 5
Compare C t5 R14 AND NOR Gate. 85
{}ate 59 -- - - - - - R002 iode Networks---...- 5
Add '1' Circuit 61... --- Parallel Adder, using R201 Flip- 190

flop, R111 Diodegates and
R602 Pulse Amplifier.

The “Logic Handbook" also includes specific instructions for
combining these basic circuits, for hardware, wiring, power
supplies and cooling (page 221 ff), and a number of specific
applications (page 175ff).

It can be seen that the circuit of FIG. 2 operates to execute
the same text matching algorithm as is illustrated in FIG. 1 and
Tables II and III. It is apparent, of course, that numerous other
specific embodiments of both circuit apparatus and pro
grammed general purpose computers could be readily devised
y those skilled in the art to practice the inventive algorithm

: epresenting applicant's contribution to the art. It is also readi
By apparent that the only real difference between the imple
mentations of FIGS. and 2 is in the specific form of ap
paratus which is utilized to practice the method of text
matching, which method forms the subject matter of appli
acant's invention.
The specific embodiments of applicant's invention hereto

forc described have been limited to the matching of texts
which are explicit and invariable, i.e., literal expressions. A far

3,568,156

more useful form of test text is the so-called “regular expres
sion' in which operators are utilized to indicate alternative
species of a generic expression, each of which will produce a
successful match. Such operators include the disjunctive
operator (OR) and the closure operator (indicating N repeti
tions of the substring operated upon, where N has any value
between zero and infinity). The disjunctive and closure opera
tors will be considered in detail, since they are illustrative and,
moreover, each provide for alternative branching in the
search operation.
The disjunctive OR operator can be represented by the sym

bol “” and indicates that either of the substrings to the right
and the left of the symbol will satisfy the test string for
matching purposes. The closure operator is represented by the
symbol “*” and indicates that the immediately preceding
character or string of characters will provide a match re
gardless of the number of times that character or substring is
repeated, including zero repetitions. If the operands to which
these operators refer exceed a single character, then

O

parentheses can be used to delimit the appropriate substrings.
Thus, the regular expression

ABC)*D7 (1)
can be matched by any one of the following strings:

AO
ABC
ACD
ABBD
ACCD
ABCD
ACBD
ABCB, etc.

Since the parentheses in the above regular expression serve
only as delimiters and do not otherwise affect the meaning of
the regular expression, such an expression can be translated to
the so-called “reverse polish' form in which all parentheses
are omitted and the operand and operators are placed in such
a sequence that the operands for each operator are unam
biguously specified. Specifically, the operand(s) for each
operator immediately precedes that operator such that if the
operations are performed in the sequence in which they ap
pear from left to right, the results of each such operation can
become the operand for a succeeding operator. Using this
notation, all juxtaposition operators must be made explicit,
and are represented by the symbol"".

Returning to the regular expression (1), this expression can
be written in reverse polish form as follows:

ABC*-D (2)
It will be noted that the juxtaposition operator is essential

for the reverse polish notation in order that this expression
uniquely represent the regular expression. Thus, the expres
sion "ABC" is expressed in reversed polish notation as
“ABC" while the expression "ABC" is expressed as "ABC
''. in each case, the reverse polish expression is interpreted by
proceeding from the left to the first operator, performing that
operation on the two immediately preceding operands to form
a new compound operand, proceeding to the next operator,
performing that operation on the two immediately preceding
operands, either or both of which may be compound
operands, and so forth.

If regular expressions are written in the reverse polish form,
the regular expression test compiler of Table IV can be used to
assemble the test code which recognizes and uses the closure
and OR operators, i.e., to test for regular expressions.

TABLEW

Regular Expression Test Compiler
procedure compile;
begin

integer char, c, pc,
integer procedure get character, code;
integer procedure command (op, address, tag, decrement),

code,

25

35

40

45

50

55

60

65

O

s

12
integer procedure value (symbol); code,
integer procedure index (character); code;
integer array stack 9:10, code (0:300;
switch switch := alpha, juxta, closure, or, eof,
C = pc = 0;

idvance:
char = get character;
go to switch (index(char));

alpha:
code pc is command ("tra', value ("code')-pc--1,0,0);
code pc-1 := command ("txl", value ('fail'), char-1);
code pc-2 := command ("txh, value('fail'), 1,char);
code pc-3} := command("tsx', value(“nnode’),4,0);
stacklc; pc,

gr) to advance;
juxta,

go to advance;
clist re.
code pc := command(*tsx, value. 'cnode'),4,0);
code pc--) := codestacklc-1,
codestacklc- command ("tra',

+pc,0,0);
pc = pc--2,
go to advance;

code pc :- command (tra', value ("code')+pc-4,0.0);
code pc--1) is command ("tsx, value ('cnode'),4,0);
coliepc--21:se codestack c-1 :
code pc-3): codestack 1c-2)),
codestack lic-2 command ('TRA", value(code')

+pc-i-1,0,0);
codestack 1 c-1)

4,0,0),
pc := pc--4;
c:at c-1;

go to advance,
eof:
code pc. := command(tra,value("found'),0,0);
pc cpc-1;

end,
The procedure of Table IV is similar to that of Table I, but

further includes appropriate compiling sequences for the OR
and closure operators. Furthermore, the code compiled for
each alphanumeric character is preceded by a transfer instruc
tion which is initially compiled to effect a transfer to the next
succeeding instruction, but which may at a later time be
modified to effect a transfer to other instructions of the testing
sequence. In general, these transfer instructions are used to
establish changeable linkages between the various character
tests and will be described in detail hereinafter.
The function "index" obtains an integer representing the

numerical priority of the contents of "char' corresponding to
the order in the "switch' statement. The array "stack' main
tains a push-down list of the locations of the various character
tests. It is used to identify operands for the closure and OR
operators. The juxtaposition position operator merely
removes the top entry on "stack' to indicate a compound
operand.
The compilation sequence for the closure operator, for ex

ample, generates an instruction causing a transfer to a subrou
tine CNODE which serves to effectively branch the current
search path. The compilation sequence for the OR operator
likewise uses the same subroutine to effect search branching.
The operation of these compiling routines can be better seen
by considering the compiled code of Table V which results
from the operation of the compiler of Table IV on the reverse
(lish regular expression (2).

value ("code')

command("tra',value('code')-pc--

3,568, 156
13

TABLEV

Test Code Compiled from “ARC *D
CODE TRA CODE O A
CODE TXL FAIL, 1A-1
CODE TXH FAIL1A 2
CODE TSX NNODE4 3.
CODE TRA CODE-16 4 B
CODE TXL FAIL1B-1 5
CODE TXH FAIL1B 6
CODE TSX NNODE4 7
CODE TRA CODE-16 8 C
CODE TXL FAIL, 1,O-1 9
CODE TXH FAIL1, C O
CODE TSX NNODE4 1.
CODE TRA CODE-16 12
CODE TSX CNODE,4 13
code TRA CODE-9 14
CODE TRA CODE-5 15
CODE TSX CNODE,4 6 *
CODE TRA CODE-3 17
CODE TRA CODE-19 8 D
CODE TXL FAIL.1, D-1 19
CODE TXH FAEL, D 20
CODE TSX NNODE,4 21
CODE TRA FOUND 22 EOF

Before proceeding to a more detailed description of the
code of Table V, it is desirable to consider the functional
block diagram of FIG.3.

in FIG. 3 there is shown a functional block diagram of a text
matching algorithm identical to that illustrated in FIG. but
further including facilities for handling search branching when
the test text is in the form of a regular expression. Elements of
FIG. 3 which correspond identically to the elements of FIG. 1
have been identified by the same reference numeral with a
prime affixed thereto. These elements will not be discussed in
detail since they are identical to the corresponding elements
of FIG. 1 and operate to cooperate in the same manner.

Also included in FIG. 3 is a test box 35 which represents the
compiled code for a regular expression operator rather than
an alphanumeric character. Since these operators do not
require matching with respect to themselves but only indicate
how the matching is to be performed on associated alphanu
meric characters, test box 35 performs no actual character
testing, instead test box 35 permits branching in the current
character matching. Since at least two alternative character
tests are required for a branch, test box 35 enables box 36
which adds one of these alternatives to the current character
test list CLIST 13' and then proceeds to the test box in block
16' corresponding to the other alternative. The way in which
this search branching is effected for the disjunctive and clo
sure operators can be seen with reference to Table V. It is first
necessary, however, to indicate the mannc; in which CLIST
13' is supplemented by way of box 36. Table VI is a FAP
subroutine having the name CNODE and which performs the
function of box 36.

TABLE WI

Regular Expression Branching Subroutine
CNODE SUBROUTINE - ADDS ONE ENTRY TO THE
CURRENT CHARACTER SEARCH LIST

CNODE AXC **.7 LOAD CCNT INTO INDEX RE
GISTER 7
CNOEE CAL CLIST.7 GET LAST ENTRY ON
CLIST (TRA XCHG)
CNODE SLW CLIST-I-17 MOVE DOWN BY ONE
LOCATION
CNODE PCA 4 GET CURRENT LOCATION IN
CODE
CNODE ACL TSXCMD ADD TSXCMD INSTRUC
TION TSX 1, 2

10

15

25

30

35

40

45

50

55

60

65

70

75

14
CNODE SLW CLIST,7 APPEND NEW ENTRY TO
CLIST
CNODE TXI *-i-1,7-1 INCREMENT CCNT BY ONE
CNODE SCA CNODE,7 SAVE NEW CCNT IN AD
DRESS OF CNODE
CNODE TRA 2,4 RETURN TO TWO PAST
CALLING LOCATION

it can be seen that the above subroutine adds a transfer to
one location past the current location in CODE to CLIST and
returns to CODE at a location two positions past the calling lo
cation. The first operation adds the second alternative to
CLIST and the second operation returns to the first alterna
tive.
Returning to Tables IV and V, the function of the initial

transfers in each alphanumeric test sequence can now be
taken up. Initially when the character tests are assembled, this
transfer is merely a transfer to the current location plus one,
thus linking the immediately preceding test with the current
test (thus assuming juxtaposition). If the character is an
operand for one of the other regular expression operators, this
initial linking transfer is modified such that the operand tests
are appropriately linked for that operator.

In the case of the OR operator (" "), the compiled code
comprises the linking transfer (which links the immediately
preceding character test to the next succeeding test, in this
case the code compiled for the closure operator), followed by
a transfer to the CNODE subroutine. Since the OR operator
has two operands, transfers to the test code for each of these
operands are compiled at this point. As can be seen from
Table IV, this is accomplished by moving the linking transfers
from the beginning of these test code blocks to the locations
following the transfer to CNODE. The linking transfer at the
beginning of the first operand is compiled to link the im
mediately preceding test to the OR block of coding while the
linking transfer between the two operands is altered to link the
first operand to the test code immediately succeeding the OR
code.
The test code for the closure operator comprises a transfer

to the subroutine CNODE followed by a transfer to the single
operand for that operator. The linking transfer for that
operand is modified to link the immediately preceding test
code to the closure code. It will be noted that there is only one
operand for the closure operator. However, the test code and
subroutines operate to initially skip the transfer to the closure
operand and thus enter the next succeeding block of test code.
In this way, the possibility of the closure operand being re
peated zero times is accommodated. Furthermore, each time
the closure operand is detected, the closure test is added to
NLIST, thereby allowing any number of repetitions of the clo
sure operand.
From the above description, it is apparent that the al

gorithm illustrated in FIG. 3 can be used for text matching of
regular expressions of any desired complexity. The use of
regular expression operators greatly simplifies the writing of
test text and permits a wide variety of matchings conditions. It
is this great flexibility combined with the extremely rapid ex
ecution of the algorithm which renders the present invention
such a great improvement over prior art algorithms.

it is to be understood that the above described arrange
ments are merely illustrative of numerous and varied other ar
rangements which may constitute applications of the princi
ples of the invention. Such other arrangements may readily be
devised by those skilled in the art without departing from the
spirit or scope of this invention.

I claim:
1. Apparatus for detecting matches between strings of infor

mation-representing signals comprising:
means for comparing each subunit of a first string to the first

subunit of a second string;
means for recording the identification of that subunit of the
second string which subunit follows each matched subu
nit of the first string;

means for comparing each identified subunit of the second
string to the next succeeding subunit of the first string;

3,568,156
15

means for indicating a successful match when all subunits of
the second string are compared; and

means for indicating an unsuccessful match when all subu
nits of the first string are compared.

2. The method of detecting matches between strings of elec- 5
tronically coded subunits comprising the steps of:

1. comparing each subunit of a first string to the first subunit
of a second string;

2. recording the identification of that subunit of the second
string following each matched subunit of the first string;

3. comparing each identified subunit of the second string to
the next succeeding subunit of the first string;

4. indicating a successful match when all subunits of the
second string are compared; and

5. indicating an unsuccessful match when all subunits of the 15
first string are compared.

3. Apparatus for detecting matches between two alphanu
meric expressions represented by electronically coded charac
ters comprising:
means for comparing each character of a first one of said

expressions to all currently possible matching characters
of the second one of said expressions;

means for compiling a first list of all possible next characters
of said second expression in response to successful
matches to the currently compared character of said first 25
expression, said possible next characters becoming said
currently possible matching characters for the next
character of said first expression; and

means for obtaining the characters of said first expression,
one at a time, for said comparisons.

4. Apparatus according to claim 3 further comprising:
means for compiling a second list of all currently possible
matching characters in response to disjunctive operators
in said first expression;

said obtaining means including means for substituting said
first list for said second list.

5. The method of detecting matches between two alphanu
meric expressions represented by electronically coded charac
ters comprising the steps of

1. comparing each character of a first one of said expres
sions to all currently possible matching characters of the
second one of said expressions;

2. compiling a first list of all possible next characters of said
second expression in response to successful matches to
the currently compared character of said first expression,

O

20

35

40

45

50

55

60

65

70

75

16
said possible next characters becoming said currently
possible matching characters for the next character of
said first expression, and

3. obtaining the characters of said first expression, one at a
time, for said comparisons.

6. The method according to claim 5 further comprising the
steps of

1. compiling a second list of all currently possible matching
characters in response to disjunctive operators in said
first expression; and

2. substituting said first list for said second list.
7. Signal matching apparatus comprising:
storage means for a first sequence of signals having

identified subsequences,
storage means for a second sequence of signals having cor

respondingly-sized subsequences, said subsequences
being made available one at a time,

means for comparing identified ones of the subsequences of
said first sequence to a currently available subsequence of
said second sequence,

first means for storing subsequence identifications for said
first sequence corresponding to the next succeeding sub
sequence following each matched subsequence of said
first sequence;

second means for storing subsequence identifications for
said first sequence, means for transferring subsequence
identifications from said first storage means to said
second storage means, and

means responsive to identifications stored in said second
storage means for selectively enabling said comparing
63S.

8. A method for a data processing system for matching
strings of electronically coded characters comprising the steps
of:

1. maintaining lists of current and next succeeding
character matching tests,

2. adding one test to the current character test list for each
alternative match;

3. adding one test to the next character test list for each suc
cessful match;

4. performing the matching tests on the current character
test list for a current character; and

5. performing the matching tests on the next character test
list for the next succeeding character.

