11 questions on software patentability issues in Eu... http://paigrain.debatpublic.net/docs/elevenquestions

Prepared for the Software and Business Method Patents: Policy Development in
the U.S. and Europe meeting, organised by The Center for Information Policy,
University of Maryland on December 10, 2001. The original of this text was

on-line at http://cip.umd.edu/Aigrain.htm (C) Copyright Philippe Aigrain,
2001. This text can be reproduced, distributed and used under the terms of

the Open Content License.

Disclaimer: Views presented in this paper are only the author's and do not
necessarily represent the official position of the European Commission.

11 questions are stated about the definition and impact of the perimeter of
patentability in relation to algorithms, software, data structures and
information processing methods. These questions regard the overall legal
framework, the substance of what software is, the economical context in which
software innovation occurs, the relations between hardware and software, the
sociology and financing of innovation, and the institutional context. The main
objective is to set the basis for further research and to provide some
preliminary directions for the impact assessment of the scope of patentability
on research, innovation, competition, literacy and societal trust in technology.*

1. What is "in a field of technology"? What does TRIPS command to be
patentable?

2. What are the typical types of software patents?

3. What is the size and granularity of investments in software innovation? At
which stage of the software life cycle do they occur?

4. Is hardware being replaced by software? Which protection for hardware /
software co-design inventions?

5. What is the impact of increased patentability of algorithms on research
and innovation?

6. How will software and information process patents impact user literacy,
inter-operability and competition?

7. What credits do software innovators need for getting access to financing?

8. What is the impact of accepting or rejecting software and data structure /
format claims?

9. Who controls and what drives the European Patent Office?

10. What is the real difference between USPTO and the most recent EPO
practice?

1 sur 16 16/01/2012 21:52

11 questions on software patentability issues in Eu... http://paigrain.debatpublic.net/docs/elevenquestions

2sur 16

11. Can the difficulty of software patent examination be handled with more

and better qualified examiners supported by better tools?

. What is "in a field of technology"? What does TRIPS command to be

patentable?

Several legal analysts have interpreted TRIPS article 27.1 as commanding
software to be patentable. Even if TRIPS did command such a thing this
would be no reason to stop thinking about whether it is a good idea.
Commentators as distinguished as Joseph E. Stiglitz have recently stated

that “almost every aspect of this agreement must be reconsidered”t. Such
a radical review is probably needed for many reasons. But this does not
mean than it should today be accepted in any way that TRIPS commands
software to be patentable. TRIPS article 27.1 states that “patent
protection shall be available for inventions, whether products or
processes, in all fields of technology”. The 2 essential qualifications
“whether product or processes” and “in all fields of technology” have been
overlooked by legalistic commentators, because, in their reading they
were mostly intended to be inclusive, to make it impossible to exclude or
treat with particular conditions a field of technology. Similarly, for some
industrial property thinkers, there is hardly a thing in the world which is
neither a product nor a process.

But is software in a field of technology? Is it a product, as the European
Patent Office has held when developing its recent case law about software
itself as a product? It is always a particular pleasure for someone working
as “head of sector for software technologies” in a programme called
“Information Society Technologies” (forbid the plurals), to argue that
certainly, software is not in a field of technology. Software is the encoding
of a text in a formal language, which can under certain conditions be
translated into other encodings of other formal languages and can then, in
some particular execution environments, be executed by computer(s), and
eventually produce some effects in the computer considered as an
abstract machine, such as changing the value of some memory. These
values can be mapped by some hardware into presentations of information
or parameters of controls of physical devices. Let us consider the
following program:

main(){

printf(“Hello world!\n”);

}

Is this program a piece of technology? Obviously not. It is a text printed

16/01/2012 21:52

11 questions on software patentability issues in Eu... http://paigrain.debatpublic.net/docs/elevenquestions

3sur 16

on the page or screen you are reading. But it “represents” a piece of
technology will claim the legalistic analysts. Drawing of machines
represent pieces of technology, and one does not allow patents on the
drawing. But one allow patents on the underlying ideas on an invention
that drawings in patents are only a way to convey to the reader, just like
here the software text conveys the idea of the invention residing in its
execution, will the legalistic analysts claim. But does it? Will this program
compile to a syntax error? Certainly if you feed it to a Prolog compiler.
Will it, if compiled by a C compiler, produce a run-time error? Most
probably if it runs on the wrong processor. Will it, when running, erase
your hard disk? Could be if it is executed with the proper authorisation
rights and with its output piped to the proper file. Will it make the Ariane
rocket explode? Who knows, if it is loaded as a component of a system and
other components use its output to map it to their acceleration input
parameter.

Far from being hair-splitting arguments, these remarks highlight the fact
that not only is software in itself intrinsically non-technical, but it takes a
good lot of precision to understand how it can be mapped into some field
of technology. Don Knuth beautifully summarised all this in one warning:
“Beware of bugs in the above program, I have only proved it correct, not

tried it”2. Software is no more a product than it is a piece of technology. It
can be sold as a product, though in most cases it is licensed, and thus sold
as a service (even if you buy the license). It can be packaged on a
product. So can novels. Do we patent ideas of novels?

At this stage, my fictitious legalistic analysts must have reached
indignation. Doesn't everyone know that software is everywhere in
technology of all kinds, that it accounts for large shares of expenses in
many industries, that software even replaces hardware. The next
questions propose to give a closer look at these affirmations. Meanwhile,
we can remember that we need precise criteria for knowing under which
conditions software can be mapped in technology, and that software itself
does not seem to be one. One last remark on this: contrarily to most texts,
software is often produced by software. Even patent infringing software

can be automatically generated by non-patent infringing softwares. It is
only human that it can be difficult for some to resist the prospect of such
an infinite ocean of litigation.

. What are the typical types of software patents?

From an extensive reading of software patents, I came to the conclusion
that there are 3 main types that account for the very vast majority:

16/01/2012 21:52

11 questions on software patentability issues in Eu... http://paigrain.debatpublic.net/docs/elevenquestions

4 sur 16

o Patents on features or elements of functionality: typical examples are
patents on “drag and drop of a URL text to create a shortcut on a
desktop” or on “multiple granularity interactive selection in text
based on segmentation of text into words”

o Patents on components of software systems: A typical example is
“caching and access management based on a markup language used
for browsing the Web from wireless devices”.

o Algorithmic patents: a typical example is “detecting scene transition
in video by statistical analysis of motion vectors”.

It would be interesting to conduct an in-depth analysis of the distribution
of patents according to this typology. Unfortunately, this is a
time-consuming research. The author has applied it to limited sets of
patents (the 30 most recent patents whose text includes the word
software granted to a particular company), and this represented about a
week of work for someone with a good general software and information
technology culture.

The main difficulty is to distinguish patents on components of software
systems (that are software patents in my definition) from patents on
physical processes or devices based on the execution of some software
components. The main criterion I have used is to look at the claimed
technical effects, and to see if these effects are themselves physical (that
is the benefit resides in how the forces of nature and organisation of
matter are used) or informational (separable from their physical basis).
When using such a criterion a video memory caching software technique
for quicker refresh of windows in a graphical user interface is
informational, while a software optimisation of low energy consumption in
a processor may be physical. But this distinction, clearly stated in the
case law until the mid-eighties, has been intentionally blurred in further
evolution. As a result many patents are written today as software system
component patents (to cover the wider possible scope) while a more
limited version of the patent might also have been written to protect the
same “invention” as a physical process.

In my experiment, conducted for a company that has a significant
hardware as well as software activity, the results were that around 70% of
the patents were pure software patents, but almost half of these could
potentially have a more restricted version which would have held under a
stricter patentability scope.

Note that this discussion concerns only scope of patentability,
independently of the judgement one has on the novelty, originality or

16/01/2012 21:52

11 questions on software patentability issues in Eu... http://paigrain.debatpublic.net/docs/elevenquestions

5sur 16

inventiveness.

3. What is the size and granularity of investments in software innovation? At

which stage of the software life cycle do they occur?

One has to reconcile 2 apparently contradictory facts. For one thing,
organisations, both companies specialised in information and
communication technology and organisations using it, spend huge
amounts of money on software. For another thing a given piece of
independently marketable software rarely accounts for more than tens of
person-years. If you look at an invention as described in patent texts, the
corresponding development is very rarely more than a few person-years,
and in most cases not more than a few days. We thus have a peculiar
situation in which software systems are expensive to build, more
expensive to test, even more to deploy and evolve, but independent
innovation components in them are small and most often incremental. Of
course it can take a good deal of skills that are expensive to train, hire
and keep to build the right software component, or to choose the right
algorithm to apply to a particular universe of data. To summarise it in one
sentence: software is small bits of innovation, on the shoulders of a large
infrastructure of skills, tools and pre-existing software, that are complex
and expensive to deploy, test and evolve into real world applications.
When software has reached a sufficient level of usefulness, it can be
spread extremely quickly in markets. All other things being equal, the
first mover advantage, and the increasing returns that it brings
compensate largely for the - relative - ease in cloning a (proprietary)
software system. From all this, it results that there are not any risks that
the absence of patent protection would create a disincentive for software
innovation in the context of software systems. Economic studies and

models? and empirical evidence such as the huge investment in software
innovation before patent protection became available are convincing in
that respect. It would nonetheless be interesting to have more detailed
analysis of the patterns of investment depending of type of software
systems and markets.

When presented with the evidence above, the supporters of software
patents in Europe recourse to the embedded software argument. When a
given product or process rests on a combination of software and
hardware, as is the case for embedded systems or systems-on-a-chip, the
investment pattern and the product deployment economics are a
combination of 2 very different types or life cycles. They claim that by not
providing patent protection to the software innovation components of
these mixed systems, one could undermine investment in the design and
manufacturing of these systems. The issues related to this special case are

16/01/2012 21:52

11 questions on software patentability issues in Eu... http://paigrain.debatpublic.net/docs/elevenquestions

6 sur 16

discussed below in the next question. Meanwhile, let us remember that
any patent protection that would be granted should be defined in such a
way that it does not extend to the cases where it is obviously irrelevant.

4. Is hardware being replaced by software? Which protection for hardware /

software co-design inventions?

Is hardware ever replaced by software? Obviously not. No software ever
ran without a hardware. But it is frequent that a hardware system is
replaced by the combination of some new form of hardware (for instance
embedded computers, sensors, and effectors) and software. What people
mean when they say that hardware is replaced by software is even more
general: they see that software and generic information technology
accounts for a bigger and bigger share of the value chain in many
industries. More generally, let's examine what happens when a classical
technology is reshaped by the introduction of software components, or by
the introduction of layers of information entities (such as gene

sequences)é. The software and information entities themselves have
properties that do not justify or strongly call against granting patent
monopolies, but a physical invention using them often still meets the
criteria for patentability. This tension has lead to an intense pressure for
an increased patentability of software or information entities themselves,
which has progressively introduced itself in case law and in the practice
of patent offices. A number of dangerous mistakes have developed, such as
the idea that a gene sequence "would represent a biological function, and
its usage in a possible drug, treatment of biotechnological process" or
that a computer program "would represent its execution on a generic
computer, and the usage of this execution in a technical process". These

statements are factually wrongﬁ, and they have been used to justify the
unjustifiable: patenting discoveries, human expression and ideas, when
none of the usual criteria for patentability was met. One important aspect
of this discussion is that one must assess what patent protection will
become for technical devices and processes when larger and larger
chunks of them will be accomplished under the control of software or
information processes. As a thought experiment, let's imagine that a set of
formerly mechanical processes would become one single meta-mechanical
machine-tool, where a software would control which of the former
individual processes is accomplished by the meta-machine. The
meta-machine itself would deserve patent protection for its technical
implementation innovative aspects. But each of the individual
instantiating software should not be covered by patents. To understand
why, one can consider 2 aspects of this change. The first one is that the
motivation to introduce it is naturally to replace a complex and rigid

16/01/2012 21:52

11 questions on software patentability issues in Eu... http://paigrain.debatpublic.net/docs/elevenquestions

7 sur 16

mechanical design process by a less costly and flexible to rearrange
software development or information process. It is exactly because the
software part of the new process no longer meets the criteria for
patentability that investors might want to introduce it. But in addition,
contrarily to what classical patent thinkers always assume, the software
components, considered themselves, are not mechanical inventions. They
are nothing but algorithms mapped though the particular semantics of an
execution context into the realm of mechanical processes.

It would be useful to complement this analysis by obtaining better
empirical knowledge of the patterns of investment and technology life
cycles in mixed hardware / software innovation.

. What is the impact of increased patentability of algorithms on research

and innovation?

Algorithmic patents are often produced by academic researchers. The
technology transfer departments of large public or semi-public research
labs in information technology (CNRS, Max Planck Institute,
Fraunhofer-GMD, INRIA, etc) often advise or even try to require, possibly
with the assistance of law and regulation, for their researchers to file
algorithmic patents. This is a truly paradoxical situation since there is
good evidence that algorithmic patents are particularly detrimental to the
progress of academic research. The analysis that follows is not
substantiated here by any hard evidence. It is based on my limited
experience and vision. It would deserve to be confirmed or contradicted
by hard facts.

Algorithmic patents hold (at least in the view of intellectual property
division managers) the promise of the holy grail: licensing revenues to
fund more academic research. They even start to pay off in academic
career plans, which open the scary scenario that we could witness as
explosive a growth of their number than for technical papers. Software

system component patents might also look promisingz for those
organisations playing the spin-off game, but algorithmic patents seem to
reward directly academic work. Unfortunately, algorithmic patents seem
to have a major side effect: they slow down cumulative progress in
computer science. In my experience, this slowdown occurs through 3
channels. The first one is the very weak disclosure effect of patents, due to
the secrecy period and secondarily to the lack of clarity and validation
data in patents. This has a worse effect in Europe than in the US due to
the absence of grace period: researchers have to abstain from publishing
while their technology transfer departments assess the patentability and
possible value of their work. But even when a patented algorithm is

16/01/2012 21:52

11 questions on software patentability issues in Eu... http://paigrain.debatpublic.net/docs/elevenquestions

8 sur 16

known, it keeps slowing down algorithmic innovation. This occurs through
the second process: channelling resources towards looking for a
non-patented technique for achieving a result that was already obtained.
This is a typical example of the essential difference between physical
inventions and information inventions: an algorithmic patent is either
irrelevant (if there are 1000 other algorithms to achieve the same result)
or impossible to turn around (if it captures an essential mathematical
constraint of the problem space). In contrast, for physical (f. i. mechanical
or chemical process) inventions, there are often a limited but open
number of solutions that improve on each other by removing constraints
associated with the previous one. Thus turning around a physical
invention patent is a source of progress, while turning around an
information invention patent is either lost time or impossible. Finally, the
third process is that, since patented algorithms very seldom have free or

open source software reference implementationsﬁ, it is extremely difficult
to conduct scientific comparisons of efficiency of algorithms. The rare
works to that effect often re-implement with errors or missing elements
the algorithms under comparison. These very few published comparisons
are of little value in such a situation, and there is a resulting lack of
scientific knowledge about how algorithms perform. In comparison, fields
characterised by the existence of freely available software implementing
non-patented algorithms demonstrate a much quicker progress. It is
illustrative to compare fields that have reached maturity before the
algorithmic patent fad (for instance general algorithms from Donald
Knuth's “The Art of Computer Programming” or basic image processing
and digital audio processing) with fields like video scene change detection
(a relatively easy problem with many patents, and still no widely available
solution 10 years after several research teams have solved it to a very
satisfying degree).

Seen from the public research funding angle, algorithmic patents lead to
a pattern of repeated funding of projects redoing various flavours of the
same thing. Even worse, fields with algorithmic patents are characterised
by a lack of usage and exploitation of the results of these projects: while in
principle we should witness the dream scenario of licensing, what we
actually witness is innovation buried in patent portfolios, and not
exploited at all. The reason is simple: the true patterns of diffusion of
software innovation are so unpredictable that only wide and transaction
free availability actually spreads it. Patents and licensing for academic
organisations are an overall losing game with a few winners, the worse
possible situation, since elementary psychology and institutional sociology
tells us that the losers will keep asking for more resources and keep
gambling as long as they can. Even worse, the technology transfer
divisions have such an interest in hiding the truth, that only a forced

16/01/2012 21:52

11 questions on software patentability issues in Eu... http://paigrain.debatpublic.net/docs/elevenquestions

disclosure of costs and revenues associated with patenting and licensing
is likely to help us in reaching a better knowledge. Further research must
not consider patent intellectual property in isolation: it must account also
for the lost time for research, and the lost opportunities for others forms of
dissemination.

6. How will software and information process patents impact user literacy,
inter-operability and competition?

Whatever decisions are made on the scope of patentability, the impact of
software-related patents is largely to come in the future. From my
experience, one of the main sources of misunderstanding around these
issues is that some consider software a field evolving towards a classical
engineering maturity, while other see software and information handling
as a general purpose literacy, as important to tomorrow's society and
economy than reading and writing is to today's. It is obvious that both
views are grounded in some reality. For some form of programming and
information handling to become pervasive literacy, it will have to look and
feel very different from what we know today, and to that purpose one will
need advances in software technology and engineering of complex
systems made of autonomous parts. But it remains that we need some
caution on the potential impact of treating with industrial property
instruments the basis for future literacy, and for all societal and economic
activities. The consequences of easing the creation or maintenance of
monopolies and oligopolies would be all the more important since there
are already natural trends to such concentration for information-related
activities characterised by increasing returns.

It took 5000 years for literacy in the classical sense to spread out of
limited groups of scribes, monks and scholars. For recorded time-based
media (more than a century old), though camcorders and sound recorders
are readily available, the concentrated structure of media industries, their
hard fight to protect their business models and access to attention time
have up to now successfully kept media literacy underground, even if it
seems that harder and harder means have to employed to that effect.
Before patentability spread, information and software technology fought
for people's interest by demonstrating that they could empower them. The
key successes of information technology literacy have been built upon
openness (email, Web navigation and publishing) or under the
instruments of copyright (word processing). Now that some major
dominant positions are installed and that other business feel threatened in
their business models, there is a genuine risk of trying to locking out
further progress of literacy.

9 sur 16 16/01/2012 21:52

11 questions on software patentability issues in Eu... http://paigrain.debatpublic.net/docs/elevenquestions

10 sur 16

The key issues in that respect regard consumer and citizen trust in
technology, and entry / complexity costs for access to provider roles. The
next phase is characterised by strategies of some players based on Web
services, net identity management, user data management, and rental
business models. One can have major fears that software method / process
patents will be used to install major competition locks in this phase.
Impact analysis might come too late, when irreversible harm is done. One
has to consider carefully if we can afford taking such as risk.

. What credits do software innovators need for getting access to financing?

One of the arguments for software patents that has some ground for
consideration regards access to financing for software innovators. It is
well known that venture capitalists and technology transfer support
programmes feel reinsured by patent credentials. But do the statistics of
risk investment support that impression? In 1999, cumulated granted
software patents in Europe were 10 times less frequent in proportion of
total patents than in the US. The overall technology venture capital
investment was close to 4 times bigger in the US, but the share going to

software was greater in Europe (30% to 48%9, 34 in the US)m.
Independently of this debate, it remains certain that better credits for
software innovators would be useful. Not only patents, but also
publications poorly account for contributions to software innovation. The
free / open source software world has developed informal mechanisms of
acknowledgement of contributions. Even if these mechanisms are not
primarily oriented towards rewarding innovation, they show the way of
using peer esteem mechanisms to build credits, and it would be worth
generalising them and giving them some technical support and visibility.

. What is the impact of accepting or rejecting software and data structure /

format claims?

Software and data structure claims have an object of particular discussion
in Europe because of the impact the form of claims has on the definition of
infringement. With software claims, any author, copier, distributor,
publisher of a piece software based on the same underlying principles
than the patented invention is in direct infringement. Without software
claims, only contributory infringement can be charged, which lowers the
prospects of actual litigation against independent developers, Web site
publishers and Internet Service Providers. This explains that even if the
scope of patentability is not necessarily different, the practical impact of
patents is different, in particular for free / open source software.

One should nonetheless note that, even without software claims, the same

16/01/2012 21:52

11 questions on software patentability issues in Eu... http://paigrain.debatpublic.net/docs/elevenquestions

11 sur 16

effects of barriers to market entry and competition, litigation threats, and
obstacles to interoperability can be obtained with any combination of:

o a weak definition of technical character in patent law,

o uncontrolled extensions to copyright concerning protection
technology and outlawing of circumvention (DMCA, and the
European Directive on Copyright in the Information Society
depending on its transposition in National rights),

o licensing regulation that allow to contract around inter-operability
provisions (UCITA).

9. Who controls and what drives the European Patent Office?

In a feat of statistical presentation the patent offices proudly announce
that 70 to 72% of holders of patents granted in 2000 own only one of
these. The other side of the coin is that 7% of the patentees (whether in
Europe or in the US) hold half of the total granted patents in 2000
(source: Trilateral statistical report, www.european-patent-office.org/tws
[tst_2000/ with some computation from graphs 4.3.1 and 4.3.3 by the
author). For the US (source USPTO), the 50 biggest patentees for 2000
were granted as much as 24% of the patents for that year. 40 of these 50
companies are software, information technology or media technology
companies to a large extent.

When one considers the owners of patents in force, the concentration is
much more important. It is difficult to estimate exactly from published
figures, but figures computed through rigourous statistical sampling of
patent databases by FFII (http://swpat.ffii.org/vreji/pikta/perled
[app_stat.html) show that 50 companies hold 43% of 38852 EPO software-
related patents, and the top-10 companies hold 24%. Now where does the
EPO (like most patent offices) gets its money from? Not at all from public
funding. A predominant part of its resources are generated by
maintenance fees on patents in force, and most of the rest from
application fees. The European Patent Office is an incredibly profitable
organisation. Its operating surplus in 2000 is 284 million DEM, 20% of its
operating income. This is almost Microsoft-level performance, and allows
the EPO to have a staff growth of 10% per year, no doubt opening the way
to further growth.

Is is thus clear that the EPO (as other patent offices) has a strong
dependency on its major customers. The effects of this dependency are
not just some ill-intended generalisation. IGEPA/SUEPO/USOEB, the
unions of EPO staff wrote in 2000: “Revenues of the self-financed EPO

16/01/2012 21:52

11 questions on software patentability issues in Eu... http://paigrain.debatpublic.net/docs/elevenquestions

12 sur 16

10.

being directly proportional to the number of granted patents, its direction
implicitly encourages examiners to do a slapdash work in order to
generate more income. Examiners are thus in front of a very unpleasant
choice between conscientiousness and the career opportunities that were

set in front of them at recruitment time”**. One has to account for
possible union bias, but figures regarding acceptation rates are also
indicative: acceptation rates went slightly down in 2000 from the even

higher rates of the previous years, but there were still 27523 European

patents granted that year (all patent domains), for 45764 examinationsi2!

Some will say this does not matter since EPO is a public organisation, with
a treaty convention as legal charter, and it is controlled by an
administrative council where governments are represented.
Unfortunately, there is more evidence of patent offices controlling
government and public administrations than of the reverse. 16 of 21

members of the EPO's administrative council2 are ... executive officers of
National patent and intellectual property offices, themselves controlled by
departments of ministries predominantly staffed by ... former or present
employees of patent and intellectual property offices.

What is the real difference between USPTO and the most recent EPO
practice?

The evolution of the scope of software patentability has been progressive,
and this evolution started much earlier in the US. It accelerated
significantly from 1997 at EPO. In the early 90s, there was a major
difference between USPTO practice and EPO's practice. But what about
now? The legal framework is still very different since the European Patent
Convention excludes in its article 52(2) computer programs,
presentations of information, methods for doing business, mental acts,
mathematical methods and other entities from being inventions. But this
exclusion and the limits to it stated in art. 52(3) have now been
interpreted to the point of being totally ignored. In his statement after the
after representatives of governments in the Munich Diplomatic
Conference decided to postpone revision of article 52(2), Dr. Roland
Grossenbacher declared on 29 November 2000: “Technical solutions for
use in data processing of for carrying out methods of doing business

therefore remain patentable"ﬂ. EPO went a step further when it

published in October 2001 revised examination guidelinesE authorising
software and data structure claims, as indicated by some case law
decisions from its in-house Chamber of Appeal. As of now, there remain
some microscopic differences in scope of patentability, mostly linked to
the difference between “usefulness” in the US patentability framework
and “susceptibility of industrial application” in the European one. But the

16/01/2012 21:52

11 questions on software patentability issues in Eu... http://paigrain.debatpublic.net/docs/elevenquestions

13 sur 16

11.

practical implementation of these differences does not give rise to any
real disagreement on technicity: chapter IV.9 of the revised guidelines
now makes it a real challenge for something NOT to be technical. There is
a 3-4 years inherent delay before such evolution can be seen in granted
patents (18 months for published applications).

The European Commission has announced that it will publish before the
end of 2001 a directive on the patentability of “computer-implemented
inventions”. Its exact contents are not known. The text submitted for

public consultation in October 20008 did not propose to accept software
claims but apart from that simply codified the practice of EPO. Recent

press articleslZ have announced that software claims will not be accepted
in the final directive proposal.

Can the difficulty of software patent examination be handled with more
and better qualified examiners supported by better tools?

USPTO itself, and authors such as Greg Arahonian have argued that the
triviality of software patents is mostly due to insufficient resources,

qualifications and prior art access tools in patent officest8. With all
respect to G. Arahonian, whose work was essential to bring the software
patent crisis to public attention, I dare to disagree. I claim that finding
software prior art is an essentially impossible task, because it is an
ill-defined problem and will remain so. Let me take an example. US patent
5,574,840 and its continuation 5,832,528 by Kwatinetz, et al. (Microsoft)
describe variable granularity selection in text, that is the feature
implemented in MS-Office of changing the selection granularity from
letter to word when passing a word boundary, and various mechanisms for
interactive control of that feature. US 5,574,840 is by far not the worse
software patent that I have seen. US 5,832,528 is an extension using
disguised software claims (18, 20, 31 and 33 start by “a computer-
readable medium whose contents cause a computer system to ...”).

My students and myself implemented a more general version of variable
granularity selection for both music and video from 1993 to 1995 in
software that was used by users in libraries and archives. We did several
communications and publications on this subject within a general
interaction framework called discrete multi-scale representation-based
interfaces, that never mentions granularity. Variable granularity selection
is more complex for audio and video than for text since one has to
automatically recognise meaningful underlying units that are obvious for
text. Its usefulness is also more evident in the case of audio. When we
were discussing it for audio, we would always use the text example as a
kind of toy example. I am not claiming this constitutes prior art

16/01/2012 21:52

11 questions on software patentability issues in Eu... http://paigrain.debatpublic.net/docs/elevenquestions

invalidating the Kwatinetz patents (it would take me a long time and
possibly is impossible for me to check if we actually published or
distributed software using the very idea of variable-granularity selection
in a context that implies its application to text similar to the patent's and
before it was filed). I do claim that this is instructive with regards to how
software ideas are transported from one domain to another, and about
how software prior art may be hidden in the most obscure places, under
improbable names.

When pushed to the limit of recognising the obvious impossibility of prior
art search for software ideas, those who think the problem is fixable use
the argument of opposition procedures. But the difficulty of finding
related prior art also applies to finding which patents you should oppose.
I discovered the Kwatinetz patent by chance, when looking for an example
to illustrate the difficulty of interaction design choices, and more
specifically how a useful functionality turns to be a nuisance when the
user wants to do a thing that the designer did not forecast.

The very beauty of software and algorithms is that through from repeated
steps of modelling, abstraction, semantical mapping, composition and
metaphors together with lots of hard tuning, innovation and usefulness
can arise. It is a beauty that all can contemplate, to which many can
contribute, but that dries out when you try to hold it for yourself only.

About the author

I am Head of Sector "Software Technologies" in the unit "Technologies
and Engineering for Software, Systems and Services" of the European
Commission Information Society Technologies R&D Programme, in which I
am in charge of actions in support to free / open source software and
related innovation. I was trained as a mathematician and theoretical
computer scientist, and hold a Doctorat and the Habilitation a Diriger les
Recherches from University Paris 7. From 1972 to 1981, I worked in
software engineering research groups of software companies. I went as a
research fellow to U.C. Berkeley in 1982. Since then, and before joining
the European Commission in 1996, I headed research teams in the field of
computer processing, indexing, retrieval and interaction for audiovisual
media (video, music, still images). I am the author of more than 60
technical papers (stopped counting at some point), as well as of papers on
the history, economy and sociology of information exchanges.

1Joseph E. Stiglitz, “La libéralisation a été programmeée par les pays
occidentaux pour les pays occidentaux”, Le Monde, 5 November 2001,
http://www.lemonde.fr/rech_art/0,5987,239761,00.html (quote translated back

14 sur 16 16/01/2012 21:52

11 questions on software patentability issues in Eu... http://paigrain.debatpublic.net/docs/elevenquestions

into English by the author).

2http://www-ce-faculty.stanford.edu/~knuth/fag.html

3See the article by John R. Koza on “Human-competitive machine intelligence
by means of genetic programming” in the special insert on genetic
programming in IEEE Intelligent Systems, May-June 2000,

http://www.computer.org/intelligent/ex2000/pdf/x3074.pdf

4]Jim Bessen and Eric Maskin, “Sequential Innovation, patents and imitation”,
MIT and Harvard Working Paper Series, 00-01, January 2000
(http://www.researchoninnovation.org/patent.pdf) remains to my knowledge
the main source of analysis at macro-level based on serious facts.

5This analysis is an excerpt from my paper “Positive Intellectual Rights and
Information Exchanges”, to appear in Michael Century, ed. CODE, MIT Press,
2002.

6Cf Henri Atlan, La fin du tout génétique, INRA éditions, 1999, on genetic
sequences and the fact that it is the set of the sequence and the complete
cellular expression machinery that constitutes a biological process. For
software, people are often confused by the reference to universal computers as
being equivalent one to another, which would seem to support the fact that
indeed a software "represents its execution". But as early as 1948, John von
Neumann ("The general and logical theory of automata", Hixon.Symp. Lecture,
Pasadena, in Collected Works 5:288-338, 1948) developed a luminous analysis
of why this theoretical equivalence was practically not effective, and in any
case it applies only to programs with predetermined input/output. In practice,
as describes under question 1, a software technical effect can be understood
only if its full execution environment is specified, including compilers,
run-time, input-output devices, input-output contents.

7Academic researchers (and more generally innovators in software) usually
treat feature patents by ignoring them. How would one do otherwise? A single
software demonstrator can infringe on dozens of them, they are generally
trivial and easy to invalidate by prior art. Even more, they are very rarely
enforced aggressively except against industry competitors who have had the
impertinence to start invading the dominant position of the patentee, which
these feature patents were supposed to protect. There is little penalty for
ignoring them, except potentially for those researchers who are also producers
of free / open source software.

8Some software patent supporters have argued that there is no contradiction
at all between patentability and open source software, and that patents could
even be used to its benefit. This seems to ignore some major practical issues

15 sur 16 16/01/2012 21:52

11 questions on software patentability issues in Eu... http://paigrain.debatpublic.net/docs/elevenquestions

(entry cost, delays and incompatibility in philosophy and motivation). It should
nonetheless be noted that some companies which are engaged in major open
source efforts (IBM, Sun, Netscape, HP) are also big software patentees. The
future interaction between these aspects is an open issue.

9Depending on which share of the category “Internet technology” is software.

10Source: “The Software sector: growth, structure and policy issues”, Working
Party on the Information Economy, OECD, October 2001.

11Union Syndicale, Bulletin Agora, Juin 2000, pages 9-10 (translated from
French by the author). On-line at: http://home.tvd.be/rc20042/public/

12http://www.european-patent-office.org/epo/facts_figures/facts2000
[pdf/fact_figures 2000.pdf

13http://www.european-patent-office.org/epo/facts_figures/facts2000
[pdf/fact_figures 2000.pdf

14http://www.european-patent-office.org/news/pressrel/2000_11 29 e.htm

15http://www.european-patent-office.org/news/pressrel/2001_10_05_e.htm

16http://europa.eu.int/comm/internal market/en/indprop/softpaten.htm
17http://www.heise.de/newsticker/data/anw-24.10.01-004/

18USPTO also claims that it has already started going in the right direction by
lowering from 56 to 36% the rate of accepted patents in the software-related
categories.

16 sur 16 16/01/2012 21:52

